Effect of RNA Interference 20S Proteasome α Subunit A Gene on Lipid Metabolism in Chlamydomonas reinhardtii
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [38]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    To understand the regulation of 20S proteasome α subunit A (POA1) gene on lipid metabolism in Chlamydomonas reinhardtii, the expression of CrPOA1 in C. reinhardtii were analyzed by qRT-PCR under low nitrogen conditions. The fragment of CrPOA1 in C. reinhardtii CC245 was cloned, and then was used to construct a CrPOA1 RNA interference vector and transferred into C. reinhardtii. The cell dry weight and lipid content of transgenic algae strains was measured. The CDs sequence was cloned. The fusion expression vector of CrPOA1-GFP was constructed and transformed into onion epidermal cells for subcellular localization. The results showed that CrPOA1 mRNA level of C. reinhardtii in low nitrogen culture was significantly decreased than that in normal culture (P<0.01). The CrPOA1 mRNA level of RNAi transgenic algae was significantly decreased by 79.36%-85.35%. The cell dry weight of CrPOA1 RNAi transgenic algae was not significantly different from the control (maa7). The lipid content was significantly decreased by 6.38%-24.63% compared with the control (maa7). The CrPOA1 might local in nucleus. So, it was suggested that CrPOA1 could be involved in lipid metabolism of C. reinhardtii.

    Reference
    [1] ZHANG D H, WANG J Q, LIN Y G, et al. Present situation and future prospect of renewable energy in China[J]. Renew Sust Energ Rev, 2017, 76:865-871. doi:10.1016/j.rser.2017.03.023.
    [2] USMANOV R A, GABITOV R R, BIKTASHEV S A, et al. Pilot unit for permanent transesterification of vegetable oils in supercritical methanol or ethanol media[J]. Russ J Phys Chem B, 2011, 5(8):1216-1227. doi:10.1134/S1990793111080112.
    [3] MA C, LIU B F, REN H Y, et al. A review on biodiesel production:Breeding technologies of microalgae containing rich lipid[J]. Appl Mechan Mat, 2014, 472:759-763. doi:10.4028/www.scientific.net/AMM.472.759.
    [4] GIM G H, RYU J, KIM M J, et al. Effects of carbon source and light intensity on the growth and total lipid production of three microalgae under different culture conditions[J]. J Ind Microbiol Biotechnol, 2016, 43(5):605-616. doi:10.1007/s10295-016-1741-y.
    [5] JUAN S, KEHOU P. Effects of different culture conditions and growth phases on lipid of microalgae[J]. Mar Fish Res, 2004, 25(6):79-85.
    [6] ANTHONY J, RANGAMARAN V R, GOPAL D, et al. Ultraviolet and 5' fluorodeoxyuridine induced random mutagenesis in Chlorella vulgaris and its impact on fatty acid profile:A new insight on lipid-metabolizing genes and structural characterization of related proteins[J]. Mar Biotechnol, 2015, 17(1):66-80. doi:10.1007/s10126-014-9597-5.
    [7] SUN P P, FAN C M, CHEN Y H, et al. The research advances on microalgae lipid synthesis and regulation by biochemical and genetic engineering[J]. Mol Plant Breed, 2017, 15(7):2628-2635. doi:10. 13271/j.mpb.015.002628. 孙配配, 范成明, 陈宇红, 等. 微藻油脂合成与调控的生化及基因工程研究进展[J]. 分子植物育种, 2017, 15(7):2628-2635. doi:10. 13271/j.mpb.015.002628.
    [8] GUSCHINA I A, HARWOOD J L. Lipids and lipid metabolism in eukaryotic algae[J]. Prog Lipid Res, 2006, 45(2):160-186. doi:10. 1016/j.plipres.2006.01.001.
    [9] DENG X D, LI Y J, FEI X W. The mRNA abundance of pepc2 gene is negatively correlated with oil content in Chlamydomonas reinhardtii[J]. Biomass Bioenerg, 2011, 35(5):1811-1817. doi:10.1016/j.biom bioe.2011.01.005.
    [10] BAURAIN D, DINANT M, COOSEMANS N, et al. Regulation of the alternative oxidase Aox1 gene in Chlamydomonas reinhardtii:Role of the nitrogen source on the expression of a reporter gene under the control of the Aox1 promoter[J]. Plant Physiol, 2003, 131(3):1418-1430. doi:10.1104/pp.013409.
    [11] LI Y, LIANG J Y, LIU X L, et al. Research progress on 26S protea-some inhibitors[J]. Acta Pharm Sin, 2017, 52(4):524-530. doi:10. 16438/j.0513-4870.2016-1082. 李媛, 梁俊玉, 刘鑫龙, 等. 26S蛋白酶体抑制剂研究进展[J]. 药学学报, 2017, 52(4):524-530. doi:10.16438/j.0513-4870.2016-1082.
    [12] LECKER S H, SOLOMON V, MITCH W E, et al. Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states[J]. J Nutr, 1999, 129(1):227S-237S. doi:10. 1093/jn/129.1.227s.
    [13] TU Y Q, CHEN C, PAN J R, et al. The ubiquitin proteasome pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis[J]. Int J Clin Exp Pathol, 2012, 5(8):726-738.
    [14] SHANG F, TAYLOR A. Roles for the ubiquitin-proteasome pathway in protein quality control and signaling in the retina:Implications in the pathogenesis of age-related macular degeneration[J]. Mol Aspects Med, 2012, 33(4):446-466. doi:10.1016/j.mam.2012.04.001.
    [15] WANG B, LI Y Q, WU N, et al. CO2 bio-mitigation using microalgae[J]. Appl Microbiol Biot, 2008, 79(5):707-718. doi:10.1007/s00253-008-1518-y.
    [16] HOLCOMB R E, MASON L J, REARDON K F, et al. Culturing and investigation of stress-induced lipid accumulation in microalgae using a microfluidic device[J]. Anal Bioanal Chem, 2011, 400(1):245-253. doi:10.1007/s00216-011-4710-3.
    [17] LONGWORTH J, WU D Y, HUETE-ORTEGA M, et al. Proteome response of Phaeodactylum tricornutum, during lipid accumulation induced by nitrogen depletion[J]. Algal Res, 2016, 18:213-224. doi:10.1016/j.algal.2016.06.015.
    [18] BELLOU S, BAESHEN M N, ELAZZAZY A M, et al. Microalgal lipids biochemistry and biotechnological perspectives[J]. Biotechnol Adv, 2014, 32(8):1476-1493. doi:10.1016/j.biotechadv.2014.10.003.
    [19] LEE J W, SHIN S Y, KIM H S, et al. Lipid turnover between membrane lipids and neutral lipids via inhibition of diacylglyceryl N,N,N-trimethylhomoserine synthesis in Chlamydomonas reinhardtii[J]. Algal Res, 2017, 27:162-169. doi:10.1016/j.algal.2017.09.001.
    [20] LI Y J, FEI X W, DENG X D. Digital gene expression profile of Chlamydomonas reinhardtii grown under nitrogen starvation[J]. Chin J Trop Agric, 2012, 32(11):66-70. doi:10.3969/j.issn.1009-2196.2012. 11.015. 李亚军, 费小雯, 邓晓东. 莱茵衣藻氮胁迫基因数字表达谱分析[J]. 热带农业科学, 2012, 32(11):66-70. doi:10.3969/j.issn.1009-2196.2012.11.015.
    [21] LI Y J, FEI X W, DENG X D. Two protocols for total RNA extraction from microalgae[J]. Chin J Trop Agric, 2011, 31(5):24-27. doi:10. 3969/j.issn.1009-2196.2011.05.007. 李亚军, 费小雯, 邓晓东. 2种微藻总RNA提取方法的比较[J]. 热带农业科学, 2011, 31(5):24-27. doi:10.3969/j.issn.1009-2196.2011.05.007.
    [22] LI X H, FEI X W, DENG X D. Construction of phosphofructokinase RNAi vectors and its impact on lipid accumulation in Chlamydomonas reinhardtii[J]. Guangdong Agric Sci, 2014, 41(10):155-159. doi:10. 3969/j.issn.1004-874X.2014.10.035. 李兴涵, 费小雯, 邓晓东. 莱茵衣藻磷酸果糖激酶RNAi载体构建及其对莱茵衣藻油脂积累的影响[J]. 广东农业科学, 2014, 41(10):155-159. doi:10.3969/j.issn.1004-874X.2014.10.035.
    [23] KINDLE K L. High-frequency nuclear transformation of Chlamydo-monas reinhardtii[J]. Proc Natl Acad Sci USA, 1990, 87(3):1228-1232. doi:10.1073/pnas.87.3.1228.
    [24] YU Y F, ZHU X B, GE H M, et al. Subcellular localization of plants based on transient expression of green fluorescent protein[J]. Jiangsu Agric Sci, 2014, 42(12):58-61. doi:10.15889/j.issn.1002-1302.2014. 12.017. 于一帆, 朱小彬, 葛会敏, 等. 基于绿色荧光蛋白瞬时表达的植物亚细胞定位方法[J]. 江苏农业科学, 2014, 42(12):58-61. doi:10. 15889/j.issn.1002-1302.2014.12.017.
    [25] XU D D, SUN F, WANG Y X, et al. Biological function insights into the ubiquitin/26S proteasome pathway in rice[J]. J Agric Sci Technol, 2018, 20(1):25-33. doi:10.13304/j.nykjdb.2017.0144. 徐丹丹, 孙帆, 王银晓, 等. 泛素/26S蛋白酶体途径在水稻中的生物学功能研究进展[J]. 中国农业科技导报, 2018, 20(1):25-33. doi:10.13304/j.nykjdb.2017.0144.
    [26] WANG J L, SHI S Q, JIA L Q, et al. Progress on functions of ubiquitin-conjugating enzyme (E2) in plants[J]. Biotechnol Bull, 2010, 20(4):7-10. 王金利, 史胜青, 贾利强, 等. 植物泛素结合酶E2功能研究进展[J]. 生物技术通报, 2010, 20(4):7-10.
    [27] PENG M S, HANNAM C, GU H L, et al. A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation[J]. Plant J, 2007, 50(2):320-337. doi:10.1111/j.1365-313X.2007.03050.x.
    [28] HOUNSLOW E, KAPOORE R V, VAIDYANATHAN S, et al. The search for a lipid trigger:The effect of salt stress on the lipid profile of the model microalgal species Chlamydomonas reinhardtii for biofuels production[J]. Curr Biotechnol, 2016, 5(4):305-313. doi:10.2174/2211550105666160322234434.
    [29] CHAISUTYAKORN P, PRAIBOON J, KAEWSURALIKHIT C. The effect of temperature on growth and lipid and fatty acid composition on marine microalgae used for biodiesel production[J]. J Appl Phycol, 2018, 30(1):37-45. doi:10.1007/s10811-017-1186-3.
    [30] PHILIPPS G, HAPPE T, HEMSCHEMEIER A. Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii[J]. Planta, 2012, 235(4):729-745. doi:10.1007/s00425-011-1537-2.
    [31] FEI X W, LI X H, LI P, et al. Involvement of Chlamydomonas DNA damage tolerence gene UBC2 in lipid accumulation[J]. Algal Res, 2017, 22:148-159. doi:10.1016/j.algal.2016.12.019.
    [32] LÜ S Y, ZHAO H Y, MARAIS D L D, et al. Arabidopsis ECERI FERUM9 involvement in cuticle formation and maintenance of plant water status[J]. Plant Physiol, 2012, 159(3):930-944. doi:10.1104/pp.112.198697.
    [33] LUO Q L, LI Y J, WANG W Q, et al. Genome-wide survey and expression analysis of Chlamydomonas reinhardtii U-box E3 ubiquitin ligases (CrPUBs) reveal a functional lipid metabolism module[J]. PLoS One, 2015, 10(11):e0142996. doi:10.1371/journal.pone.0122600.
    [34] van LOON N M, OTTENHOFF R, KOOIJMAN S, et al. Inactivation of the E3 ubiquitin ligase IDOL attenuates diet-induced obesity and metabolic dysfunction in mice[J]. Arterioscle Thrombosis Vascul Biol, 2018, 38(8):1785-1795. doi:10.1161/ATVBAHA.118.311168
    [35] OLIVA J, FRENCH S W, LI J, et al. Proteasome inhibitor treatment reduced fatty acid, triacylglycerol and cholesterol synthesis[J]. Exp Mol Pathol, 2012, 93(1):26-34. doi:10.1016/j.yexmp.2012.03.006.
    [36] YU W L, ANSARI W, SCHOEPP N G, et al. Modifications of the meta-bolic pathways of lipid and triacylglycerol production in microalgae[J]. Microb Cell Fact, 2011, 10(1):91. doi:10.1186/1475-2859-10-91.
    [37] HE S S, WANG Y L, GAO B Y, et al. Biosynthetic pathway of triacyl-glycerol in microalgae and its latest research progress[J]. Chin Bull Life Sci, 2014, 26(9):979-990. doi:10.13376/j.cbls/2014141. 何思思, 王元丽, 高保燕, 等. 微藻三酰甘油合成途径及其最新研究进展[J]. 生命科学, 2014, 26(9):979-990. doi:10.13376/j.cbls/2014141.
    [38] LI Y T, HAN D X, HU G R, et al. Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacyl-glycerol[J]. Metab Eng, 2010, 12(4):387-391. doi:10.1016/j.ymben. 2010.02.002.
    Cited by
Get Citation

李兴涵,费小雯,李亚军,邓晓东. RNA干扰20S蛋白酶体α亚基基因对莱茵衣藻油脂代谢的影响[J].热带亚热带植物学报,2020,28(4):329~338

Copy
Share
Article Metrics
  • Abstract:663
  • PDF: 585
  • HTML: 335
  • Cited by: 0
History
  • Received:October 16,2019
  • Revised:January 01,2020
  • Online: July 23,2020
Article QR Code