Growth Dynamics of Acacia auriculiformis under Cadmium Pollution and Its Combination with Atmospheric CO2 Enrichment and Nitrogen Addition
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [44]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to understand the response of trees to elevated CO2, N addition and Cd stress, the growth characters of Acacia auriculiformis, such as basal diameter, tree height and individual biomass, were studied using an open-top chamber (OTC). The results showed that the basal diameter, height and individual biomass of A. auriculiformis were significantly inhibited under Cd stress, and the inhibition effect was with a lag time. Both elevated CO2 and N addition remitted the inhibition of Cd stress on A. auriculiformis growth, N addition could promote the base diameter growth of A. auriculiformis, and tree height growth was more sensitive to CO2 enrichment. Under Cd stress, the biomass accumulation of A. auriculiformis was mainly caused by N addition. So, it was suggested that N fertilization management was an important strategy to promote phytoremediation in the early stage of heavy metal contaminated land remediation.

    Reference
    [1] DIXON R K, SOLOMON A M, BROWN S, HOUGHTON R A, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263(5144):185——190. doi:10.1126/science.263.5144.185.
    [2] GUO Z D, HU H F, LI P, et al. Spatio-temporal changes in biomass carbon sinks in China's forests from 1977 to 2008[J]. Sci China Life Sci, 2013, 56(7):661-671. doi:10.1007/s11427-013-4492-2.
    [3] SU Y J, GUO Q H, XUE B L, et al. Spatial distribution of forest aboveground biomass in China:Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data[J]. Remote Sens Environ, 2016, 173:187-199. doi:10.1016/j.rse.2015.12.002.
    [4] PAN Y D, BIRDSEY R A, FANG J Y, et al. A large and persistent carbon sink in the world's forests[J]. Science, 2011, 333(6045):988-993. doi:10.1126/science.1201609.
    [5] SHEVLIAKOVA E, STOUFFER R J, MALYSHEV S, et al. Historical warming reduced due to enhanced land carbon uptake[J]. Proc Natl Acad Sci USA, 2013, 110(42):16730-16735. doi:10.1073/pnas.1314047110.
    [6] FANG J Y, GUO Z D, HU H F, et al. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth[J]. Glob Change Biol, 2014, 20(6):2019-2030. doi:10.1111/gcb.12512.
    [7] FANG J Y, CHEN A P. Dynamic forest biomass carbon pools in China and their significance[J]. Acta Bot Sin, 2001, 43(9):967-973. doi:10.3321/j.issn:1672-9072.2001.09.014. 方精云, 陈安平. 中国森林植被碳库的动态变化及其意义[J]. 植物学报, 2001, 43(9):967-973. doi:10.3321/j.issn:1672-9072.2001.09.014.
    [8] State Forestry Administration. The results of the eighth national forest resource inventory[J]. For Resour Manag, 2014(1):1-21. doi:10.13466/j.cnki.lyzygl.2014.01.001. 国家林业局. 第八次全国森林资源清查结果[J]. 林业资源管理, 2014(1):1-2. doi:10.13466/j.cnki.lyzygl.2014.01.001.
    [9] STOCKER T F, QIN D, PLATTNER G K, et al. IPCC, 2013:Climate Change 2013:The Physical Science Basis[C]//Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Vol. 18(2). Cambridge Comput Geom:Cambridge University Press, 2013, 18(2):95-123.
    [10] GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transfor-mation of the nitrogen cycle:Recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878):889-892. doi:10.1126/science. 1136674.
    [11] OLLINGER S V, ABER J D, REICH P B, et al. Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 and land use history on the carbon dynamics of northern hardwood forests[J]. Glob Change Biol, 2002, 8(6):545-562. doi:10.1046/j.1365-2486.2002.00482.x.
    [12] LUO Y Q, HUI D F, ZHANG D Q. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems:A meta-analysis[J]. Ecology, 2006, 87(1):53-63. doi:10.1890/04-1724.
    [13] XU Z Z, JIANG Y L, ZHOU G S. Response and adaptation of photo-synthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants[J]. Front Plant Sci, 2015, 6:7017. doi:10.3389/fpls.2015.00701.
    [14] SCHULTE-UEBBING L, de VRIES W. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests:A meta-analysis[J]. Glob Change Biol, 20187, 24(2):e416-e4316. doi:10.1111/gcb.13862.
    [15] McCARTHY H R, OREN R, FINZI A C, et al. Canopy leaf area constrains[CO2]-induced enhancement of productivity and partitioning among aboveground carbon pools[J]. Proc Natl Acad Sci USA, 2006, 103(51):19356-19361. doi:10.1073/pnas.0609448103.
    [16] NEFF J C, TOWNSEND A R, GLEIXNER G, et al. Variable effects of nitrogen additions on the stability and turnover of soil carbon[J]. Nature, 2002, 419(6910):915-917. doi:10.1038/nature01136.
    [17] PENÑUELAS J, SARDANS J, RIVAS-UBACH A, et al. The human-induced imbalance between C, N and P in Earth's life system[J]. Glob Change Biol, 2012, 18(1):3-6. doi:10.1111/j.1365-2486.2011.02568.x.
    [18] CHEN Y P, LIU Q, LIU Y J, et al. Responses of soil microbial activity to cadmium pollution and elevated CO2[J]. Sci Rep, 2014, 4:42876. doi:10.1038/srep04287.
    [19] ASHRAF S, ALI Q, ZAHIR Z A, et al. Phytoremediation:Environ-mentally sustainable way for reclamation of heavy metal polluted soils[J]. Ecotoxicol Environ Saf, 2019, 174:714-727. doi:10.1016/j.ecoenv. 2019.02.068.
    [20] SUN F F, WEN D Z, KUANG Y W, et al. Concentrations of sulphur and heavy metals in needles and rooting soils of masson pine (Pinus massoniana L.) trees growing along an urban-rural gradient in Guang-zhou, China[J]. Environ Monit Assess, 2009, 154(1/2/3/4):263-274. doi:10.1007/s10661-008-0394-3.
    [21] TIAN H Q, MELILLO J, LU C Q, et al. China's terrestrial carbon balance:Contributions from multiple global change factors[J]. Glob Bio-geochem Cycl, 2011, 25(1):GB100716. doi:10.1029/2010GB003838.
    [22] NORBY R J, DE KAUWE M G, DOMINGUES T F, et al. Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments[J]. New Phytol, 2016, 209(1):17-28. doi:10.1111/nph.13593.
    [23] FANG J Y, CHEN A P, PENG C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292(5525):2320-2322. doi:10.1126/science.1058629.
    [24] PIAO S L, FANG J Y, CIAIS P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009, 458(7241):1009-1013. doi:10.1038/nature07944.
    [25] ZHAO Q G. Suggestions for solving problems in resource and environ-mental qualities of highly developed coastal regions in southeast China[J]. Soils, 2001, 33(3):113-118. doi:10.3321/j.issn:0253-9829.2001.03.001. 赵其国. 解决我国东南沿海经济快速发展地区资源与环境质量问题刻不容缓——关于该区资源与环境质量问题研究的建议[J]. 土壤, 2001, 33(03):113-118. doi:10.3321/j.issn:0253-9829.2001.03.001.
    [26] HAO J M. Acid Deposition Critical Load and Its Application[M]. Beijing:Tsinghua University Press, 2001:1-374. 郝吉明. 酸沉降临界负荷及其应用[M]. 北京:清华大学出版社, 2001:1-374.
    [27] ZHU Y G, CHEN B D, LING A J, et al. Heavy metal contamination in Pearl River Delta:Status and research priorities[J]. Acta Sci Circum, 2005, 25(12):1575-1579. doi:10.3321/j.issn:0253-2468.2005.12.001. 朱永官, 陈保冬, 林爱军, 等. 珠江三角洲地区土壤重金属污染控制与修复研究的若干思考[J]. 环境科学学报, 2005, 25(12):1575-1579. doi:10.3321/j.issn:0253-2468.2005.12.001.
    [28] NAGAJYOTI P C, LEE K D, SREEKANTH T V M. Heavy metals, occurrence and toxicity for plants:A review[J]. Environ Chem Lett, 2010, 8(3):199-216. doi:10.1007/s10311-010-0297-8.
    [29] SATARUG S, BAKER J R, URBENJAPOL S, et al. A global perspec-tive on cadmium pollution and toxicity in non-occupationally exposed population[J]. Toxicol Lett, 2003, 137(1/2):65-83. doi:10.1016/S0378-4274(02)00381-8.
    [30] REN H, PENG S L. The ecological and biological characteristics of Acacia auriculaeformis[J]. Guihaia, 1998, 18(02):146-152. 任海, 彭少麟. 大叶相思的生态生物学特征[J]. 广西植物, 1998, 18(02):146-152.
    [31] WEI Z J Z, QIU X J, MO Z Z. Study on collection and preservation of acacia tree germplasm resources[J]. Guangxi For Sci, 1996, 25(4):181-188,205. doi:10.19692/j.cnki.gfs.1996.04.001. 韦增建, 丘小军, 莫钊志. 相思类树种种质资源收集保存研究[J]. 广西林业科学, 1996, 25(4):181-188,205. doi:10.19692/j.cnki.gfs. 1996.04.001.
    [32] HUANG W J, ZHOU G Y, LIU J X, et al. Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest ecosystems[J]. Environ Pollut, 2012, 168:113-120. doi:10.1016/j.envpol.2012.04.027.
    [33] MO J M, BROWN S, XUE J H, et al. Responses of litter decompo-sition to simulated N deposition in disturbed, rehabilitated and mature forests in subtropical China[J]. Plant Soil, 2006, 282(1/2):135-151. doi:10.1007/s11104-005-5446-7.
    [34] WANG W F, LEI Y C, WANG X F, et al. A review of forest biomass models[J]. J NW For Univ, 2008, 23(2):58-63. 王维枫, 雷渊才, 王雪峰, 等. 森林生物量模型综述[J]. 西北林学院学报, 2008, 23(2):58-63.
    [35] GAO C J, TANG G Y, SUN Y Y, et al. Biomass and allocation of young Azadirachta indica and Acacia auriculiformis for different restoration patterns in Dry-hot vallegy[J]. J Zhejiang Agric For Univ, 2012, 29(4):482-490. doi:10.11833/j.issn.2095-0756.2012.04.002. 高成杰, 唐国勇, 孙永玉, 等. 不同恢复模式下干热河谷幼龄印楝和大叶相思生物量及其分配[J]. 浙江农林大学学报, 2012, 29(4):482-490. doi:10.11833/j.issn.2095-0756.2012.04.002.
    [36] van ASSCHE F, CLIJSTERS H. Effects of metals on enzyme-activity in plants[J]. Plant Cell Environ, 1990, 13(3):195-206. doi:10.1111/j. 1365-3040.1990.tb01304.x.
    [37] SEREGIN I V, IVANOV V B. Physiological aspects of cadmium and lead toxic effects on higher plants[J]. Russ J Plant Physiol, 2001, 48(4):523-544. doi:10.1023/A:1016719901147.
    [38] MA W L. BotanyPhytology[M]. 2nd ed. Beijing:Higher Education Press, 2015:50-58. 马炜梁. 植物学[M]. 第2版. 北京:高等教育出版社, 2015:50-58.
    [39] JIA Y. Physiological and biochemical responses of ryegrass to elevate atmospheric CO2 under cadmium stress[D]. Wuhan:Huazhong Agri-cultural University, 2010:1-90. 贾炎. 镉胁迫下黑麦草对二氧化碳升高的生理生化响应研究[D]. 武汉:华中农业大学, 2010:1-90.
    [40] SCHAZ U, DUÜLL B, REINBOTHE C, et al. Influence of root-bed size on the response of tobacco to elevated CO2 as mediated by cyto-kinins[J]. AoB PLANTS, 2014, 6:plu01016. doi:10.1093/aobpla/plu010.
    [41] LIU F M, WANG L R, LI Y, et al. Research progress on the effects of elevating the atmospheric CO2 concentraitioan on woody plants[J]. J Anhui Agric Sci, 2008, 4836(28):12182-12185. doi:10.3969/j.issn. 0517-6611.2008.28.048. 刘发民, 王利荣, 李怡, 等. 大气CO2浓度升高对木本植物影响的研究进展[J]. 安徽农业科学, 2008, 4836(28):12182-12185. doi:10.3969/j.issn.0517-6611.2008.28.048.
    [42] DUAN H L, LIU J X, DENG Q, et al. Effects of elevated CO2 and N deposition on plant biomass accumulation and allocation in subtropical forest ecosystems:A mesocosm study[J]. Chin J Plant Ecol, 2009, 33(3):570-579. doi:10.3773/j.issn.1005-264x.2009.03.016. 段洪浪, 刘菊秀, 邓琦, 等. CO2浓度升高与氮沉降对南亚热带森林生态系统植物生物量积累及分配格局的影响[J]. 植物生态学报, 2009, 33(3):570-579. doi:10.3773/j.issn.1005-264x.2009.03.016.
    [43] Li X H, LAN L Q, WU Q Y, et al. Effects of cadmium stress on reactive oxygen aetabolism in wheat at different developemental stages[J]. J Sichuan Univ (Nat Sci), 2007, 44(2):420-424. doi:10.3969/j. issn.0490-6756.2007.02.045. 黎晓红, 兰利琼, 吴巧玉, 等. 镉胁迫对小麦不同生育期活性氧代谢的影响[J]. 四川大学学报(自然科学版), 2007, 44(2):420-424. doi:10.3969/j.issn.0490-6756.2007.02.045.
    [44] KNAPP A K, SMITH M D. Variation among biomes in temporal dynamics of aboveground primary production[J]. Science, 2001, 291(5503):481-484. doi:10.1126/science.291.5503.481.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

易亚凤,彭诗涛,张玲玲,尧波,罗先真,臧晓蔚,张桂华,温达志. Cd污染及其与大气CO2浓度升高、N添加复合作用对大叶相思生长的影响[J].热带亚热带植物学报,2020,28(1):17~24

Copy
Share
Article Metrics
  • Abstract:732
  • PDF: 644
  • HTML: 621
  • Cited by: 0
History
  • Received:April 18,2019
  • Revised:July 14,2019
  • Online: January 15,2020
Article QR Code