Response to Drought Stress Simulated by PEG of Phalaenopsis pulcherrima
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [45]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    In order to understand the effect of drought stress on the growth of Phalaenopsis pulcherrima, the changes in contents of photosynthetic pigments, osmotic adjustment substances and non-structural carbohydrates in leaves were studied. The polyethylene glycol 6000 (PEG) solution was used to simulate drought stress. The results showed that plant water content and fresh weight decreased gradually with increment of PEG concentration, and plant water content and fresh weight decreased significantly treated with PEG from 13.75% to 14.84%. The contents of chlorophyll a and b decreased significantly in leaves treated with PEG. With the decreasing of plant water content, the contents of soluble protein and starch (St) decreased gradually, while the soluble sugar (SS), NSC (non-structural carbohydrate), and SS/St in leaves increased at first and then decreased. Therefore, the drought stress simulated by PEG could significantly affect plant water content and accumulation of photosynthetic products in leaves. Under light drought stress, soluble sugar played an important role in resistance to drought, while the physiological metabolism of P. pulcherrima would be seriously influenced under severe drought stress.

    Reference
    [1] BIEHLER K, FOCK H. Evidence for the contribution of the mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat[J]. Plant Physiol, 1996, 112:265-272. doi:10.1104/pp.112.1.265.
    [2] LI Z L. The morphology and structure of xerophytes[J]. Bull Biol, 1981(4):9-12. 李正理. 旱生植物的形态和结构[J]. 生物学通报, 1981(4):9-12.
    [3] WANG J S, LI Y H, WANG R Y, et al. Preliminary analysis on the demand and review of progress in the field of meteorological drought research[J]. J Arid Meteor, 2012, 30(4):497-508. 王劲松, 李耀辉, 王润元, 等. 我国气象干旱研究进展评述[J]. 干旱气象, 2012, 30(4):497-508.
    [4] ZHANG J M, REN X X, QIN W, et al. Effects of drought stress on antioxidant enzyme activities, chlorophyll fluorescence parameters and root activity of watermelon leaves[J]. Tianjin Agric Sci, 2018, 24(11):1-3. 张金民, 任晓雪, 秦伟, 等. 干旱胁迫对西瓜叶抗氧化酶活性、叶绿素荧光参数及根系活力的影响[J]. 天津农业科学, 2018, 24(11):1-3.
    [5] GAO L. Effects of drought stress on plant[J]. Fujian Agric, 2014(8):19. 高蕾. 干旱胁迫对植物的影响[J]. 福建农业, 2014(8):19.
    [6] SUN X Z, ZHENG C S, WANG X F. Advances of drought tolerant mechanism in woody plant[J]. Acta Bot Boreal-Occid Sin, 2007, 27(3):629-634. doi:10.3321/j.issn:1000-4025.2007.03.037. 孙宪芝, 郑成淑, 王秀峰. 木本植物抗旱机理研究进展[J]. 西北植物学报, 2007, 27(3):629-634. doi:10.3321/j.issn:1000-4025.2007.03.037.
    [7] DINU Q X, LIU J, GAO J. Physiological response of Brachypodium sylvaticum under simulated drought stress by polyethylene glycol (PEG-6000)[J]. Acta Agrest Sin, 2016, 24(5):995-1000. doi:10.11733/j.issn.1007-0435.2016.05.010. 丁青霞, 刘佳, 高菊. 小颖短柄草对PEG-6000模拟干旱胁迫的生理响应[J]. 草地学报, 2016, 24(5):995-1000. doi:10.11733/j.issn. 1007-0435.2016.05.010.
    [8] ZHOU Q, CAO J C, CUI M K, et al. Roles of non-structural sugars in response and adaptation of plants to drought stress[J]. J Anhui Agric Sci, 2018, 46(30):24-28. doi:10.13989/j.cnki.0517-6611.2018.30.008. 周倩, 曹家畅, 崔明昆, 等. 非结构性糖在植物对干旱胁迫响应与适应中的作用[J]. 安徽农业科学, 2018, 46(30):24-28. doi:10.13989/j.cnki.0517-6611.2018.30.008.
    [9] ZHANG L L, YU H X, MENG H T, et al. Physiological and bioche-mical response of Panax quinquefolius to drought stress[J]. Spec Wild Econ Anim Plant Res, 2018, 40(4):16-20. doi:10.16720/j.cnki.tcyj. 2018.04.003. 张淋淋, 于红霞, 孟洪涛, 等. 西洋参对干旱胁迫的生理生化反应[J]. 特产研究, 2018, 40(4):16-20. doi:10.16720/j.cnki.tcyj.2018.04.003.
    [10] DENG H. The study of crassulacean acid metabolism (CAM) photo-synthesis in orchids[D]. Beijing:Chinese Academy of Forestry, 2015:1-100. 邓华. 兰科植物景天酸代谢(CAM)途径研究[D]. 北京:中国林业科学研究院, 2015:1-100.
    [11] TSAI C C, CHIANG Y C, HUANG S C, et al. Molecular phylogeny of Phalaenopsis Blume (Orchidaceae) on the basis of plastid and nuclear DNA[J]. Plant Syst Evol, 2010, 288(1/2):77-98.
    [12] YANG Q. Population monitor and re-introduction of Phalaenopsis pulcherrima Lindl. (Orchidaceae) in the original habitat[D]. Haikou:Hainan University, 2013:1-53. 杨琪. 五唇兰野外种群监测和重引入研究[D]. 海口:海南大学, 2013:1-53.
    [13] JI Z H, CHEN X Q, LUO Y B, et al. Florae Reipublicae Popularis Sinicae, Tomus 19[M]. Beijing:Science Press, 1999:276-278. 吉占和, 陈心启, 罗毅波, 等. 中国植物志, 第19卷[M]. 北京:科学出版社, 1999:276-278.
    [14] JIN X H, LI D Z, REN Z X, et al. A generalized deceptive pollination system of Doritis pulcherrima (Aeridinae:Orchidaceae) with non-reconfigured pollinaria[J]. BMC Plant Biol, 2012, 12:67. doi:10.1186/1471-2229-12-67.
    [15] SONG X Q. Tropical Floriculture[M]. Beijing:China Forestry Publishing House, 2009:263-273. 宋希强. 热带花卉学[M]. 北京:中国林业出版社, 2009:263-273.
    [16] LONG W X, DING Y, ZANG R G, et al. Environmental characteristics of tropical cloud forests in the rainy season in Bawangling National Nature Reserve on Hainan Island, south China[J]. Chin J Plant Ecol, 2011, 35(2):137-146. doi:10.3724/SP.J.1258.2011.00137. 龙文兴, 丁易, 臧润国, 等. 海南岛霸王岭热带云雾林雨季的环境特征[J]. 植物生态学报, 2011, 35(2):137-146. doi:10.3724/SP.J. 1258.2011.00137.
    [17] DONG X Y, MI C, LIU Z G, et al. Response of winter rapessed seeding growth and physiological characteristics under PEG drought tolerance[J]. J Henan Agric Univ, 2018, 52(3):313-321. doi:10.16445/j.cnki. 1000-2340.2018.03.002. 董小云, 米超, 刘自刚, 等. PEG模拟水分胁迫对白菜型冬油菜幼苗生长及生长特性的影响[J]. 河南农业大学学报, 2018, 52(3):313-321. doi:10.16445/j.cnki.1000-2340.2018.03.002.
    [18] DU H, MA T T, GUO S, et al. Response of root morphology and leaf osmoregulation substances of seedling in barley genotypes with different heights to PEG stress[J]. Sci Agric Sin, 2017, 50(13):2423-2432. doi:10.3864/j.issn.0578-1752.2017.13.002. 杜欢, 马彤彤, 郭帅, 等. 大麦近等基因系苗期根系形态及叶片渗透调节物质对PEG胁迫的响应[J]. 中国农业科学, 2017, 50(13):2423-2432. doi:10.3864/j.issn.0578-1752.2017.13.002.
    [19] GUO Y Y, YU H Y, KONG D S, et al. Response of seed germination of Lycium ruthenicum to PEG-simulated drought stress[J]. Bull Soil Water Cons, 2017, 37(5):98-102,109. doi:10.13961/j.cnki.stbctb. 2017.05.017. 郭有燕, 余宏远, 孔东升, 等. 黑果枸杞种子萌发对PEG模拟干旱胁迫的响应[J]. 水土保持通报, 2017, 37(5):98-102,109. doi:10.13961/j.cnki.stbctb.2017.05.017.
    [20] CHEN X, YANG P J, ZHANG X Q, et al. Physiological response of transgenic tobacco to drought stress simulated by PEG 6000[J]. Guihaia, 2016, 36(12):1498-1504,1467. doi:10.11931/guihaia.gxzw 201510024. 陈霞, 杨鹏军, 张旭强, 等. 转基因烟草在PEG 6000模拟干旱胁迫条件下的生理响应[J]. 广西植物, 2016, 36(12):1498-1504,1467. doi:10.11931/guihaia.gxzw201510024.
    [21] LIU Z D. The study of transformation mechanism of morphology and physiology in the switch from C3-photosynthesis to Crassulacean acid metabolism of Dendrobium[D]. Wuhan:Huazhong Agricultural University, 2014:14-15. 刘张栋. 石斛属植物C3/CAM代谢转换中形态结构及生理生化转变研究[D]. 武汉:华中农业大学, 2014:14-15.
    [22] DU Y, HAN Y, WANG C K. The influence of drought on non-structural carbohydrates in the needles and twigs of Larix gmelinii[J]. Acta Ecol Sin, 2014, 34(21):6090-6100. doi:10.5846/stxb201401260198. 杜尧, 韩轶, 王传宽. 干旱对兴安落叶松枝叶非结构性碳水化合物的影响[J]. 生态学报, 2014, 34(21):6090-6100. doi:10.5846/stxb 201401260198.
    [23] MA Y P, SUN L L, MA X Q. Ecophysiological responses of summer maize to drought and waterlogging in Huang-Huai-Hai Plain[J]. Agric Res Arid Areas, 2016, 34(4):85-93. doi:10.7606/j.issn.1000-7601.2016.04.13. 马玉平, 孙琳丽, 马晓群. 黄淮海地区夏玉米对干旱和涝渍的生理生态反应[J]. 干旱地区农业研究, 2016, 34(4):85-93. doi:10.7606/j.issn.1000-7601.2016.04.13.
    [24] CHEN X, KANG Y, GONG L S, et al. Effect of water on cotton growth and yield in jujube-cotton intercropping system[J]. J Tarim Univ, 2018, 30(4):44-50. doi:10.3969/j.issn.1009-0568.2018.04.007. 陈旭, 康郁, 龚莉莎, 等. 枣棉间作下水分对棉花生长发育的影响[J]. 塔里木大学学报, 2018, 30(4):44-50. doi:10.3969/j.issn.1009-0568.2018.04.007.
    [25] WANG X L, XU Z H, WEI W C, et al. Effect of drought stress on growth and carbonic anhydrase activity of Pinus yunnanensis seedlings[J]. J Shandong Agric Univ (Nat Sci), 2019, 50(1):6-11. doi:10.3969/j. issn.1000-2324.2019.01.002. 王晓丽, 徐志鸿, 韦文长, 等. 干旱胁迫对云南松苗木生长及碳酸酐酶的影响[J]. 山东农业大学学报(自然科学版), 2019, 50(1):6-11. doi:10.3969/j.issn.1000-2324.2019.01.002.
    [26] CHEN W R, ZENG W W, LI Y X, et al. The physiological responds of highbush blueberry to drought stress and the comprehensive evaluation on their drought resistance capacity[J]. Acta Hort Sin, 2012, 39(4):637-646. doi:10.16420/j.issn.0513-353x.2012.04.006. 陈文荣, 曾玮玮, 李云霞, 等. 高丛蓝莓对干旱胁迫的生理响应及其抗旱性综合评价[J]. 园艺学报, 2012, 39(4):637-646. doi:10.16420/j.issn.0513-353x.2012.04.006.
    [27] WU J H, GUO Y, CUI Y T. Effects of water stress on ultrastructure and photosynthetic physiological factors of Potentilla sericea[J]. Pratac Sci, 2012, 29(3):434-439. 吴建慧, 郭瑶, 崔艳桃. 水分胁迫对绢毛委陵菜叶绿体超微结构及光合生理因子的影响[J]. 草业科学, 2012, 29(3):434-439.
    [28] MOHANTY S, GRIMM B, TRIPATHY B C. Light and dark modu-lation of chlorophyll biosynthetic genes in response to temperature[J]. Planta, 2006, 224(3):692-699. doi:10.1007/s00425-006-0248-6.
    [29] QIN Y M, HAN F Y, LIU S H, et al. Effects of silicon on growth, photosynthetic pigment and photosynthetic characteristics of sand culture potato[J]. Jiangsu Agric Sci, 2018, 46(20):72-75. doi:10.15889/j.issn.1002-1302.2018.20.018. 秦永梅, 韩凤英, 刘素慧, 等. 硅对沙培马铃薯生长发育、光合色素与光合特性的影响[J]. 江苏农业科学, 2018, 46(20):72-75. doi:10.15889/j.issn.1002-1302.2018.20.018.
    [30] HOU W, SUN A H, YANG F S, et al. Effects of low temperature stress on photosynthesis and chlorophyll fluorescence in watermelon seedlings[J]. Guangdong Agric Sci, 2014, 41(13):35-39. doi:10.3969/j.issn. 1004-874X.2014.13.008. 侯伟, 孙爱花, 杨福孙, 等. 低温胁迫对西瓜幼苗光合作用与叶绿素荧光特性的影响[J]. 广东农业科学, 2014, 41(13):35-39. doi:10.3969/j.issn.1004-874X.2014.13.008.
    [31] YUAN G Q, LIU Y, WU J C, et al. Response of growth and photo-synthesis of mulberry and birch under three soil types to simulated flooding in the Three Gorges Reservoir Region[J]. J NW Agric For Univ (Nat Sci), 2018, 46(6):1-10. doi:10.13207/j.cnki.jnwafu.2018.06.009. 袁贵琼, 刘芸, 邬静淳, 等. 3种土壤类型下桑树和水桦生长及光合对模拟三峡库区消落带水淹的响应[J]. 西北农林科技大学学报(自然科学版), 2018, 46(6):1-10. doi:10.13207/j.cnki.jnwafu.2018.06.009.
    [32] ZHANG Z H, GONG J R, YAN X, et al. Effects of grazing on photosynthetic characteristics of Leymus chinensis in meadow steppe of Inner Mongolia, China[J]. Acta Pratacult Sin, 2018, 27(11):36-48. doi:10.11686/cyxb2017516. 张子荷, 龚吉蕊, 晏欣, 等. 放牧干扰对内蒙古草甸草原羊草光合特性的影响[J]. 草业学报, 2018, 27(11):36-48. doi:10.11686/cyxb 2017516.
    [33] VURUKONDA S S K P, VARDHARAJULA S, SHRIVASTAVA M, et al. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria[J]. Microbiol Res, 2016, 184:13-24. doi:10.1016/j.micres.2015.12.003.
    [34] SONG J X, LÜ J, ZONG X F, et al. Effects of brassinolide and N, P, K fertiliser on growth of Leymus chinensis under drought stress[J]. Acta Pratacult Sin, 2018, 27(11):171-178. doi:10.11686/cyxb 2017512. 宋吉轩, 吕俊, 宗学凤, 等. 干旱胁迫下BR与N、P、K配合对羊草生长及抗旱性的影响[J]. 草业学报, 2018, 27(11):171-178. doi:10.11686/cyxb2017512.
    [35] WANG D, XUAN J P, ZHU X C, et al. Relationships of freezing tolerance and the contents of carbohydrates, proline, protein in centipe-degrass[Eremochloa ophiuroides (Munro.) Hack.] [J]. Acta Agrest Sin, 2010, 18(6):816-822. doi:10.11733/j.issn.1007-0435.2010.06.012. 王丹, 宣继萍, 朱小晨, 等. 假俭草抗寒性与体内碳水化合物、脯氨酸、可溶性蛋白含量的关系[J]. 草地学报, 2010, 18(6):816-822. doi:10.11733/j.issn.1007-0435.2010.06.012.
    [36] WU Y, SU H N, HUANG A J, et al. Effect of Candidatus liberibacter asiaticus infection on carbohydrate metabolism in Citrus sinensis[J]. Sci Agric Sin, 2015, 48(1):63-72. doi:10.3864/j.issn.0578-1752.2015.01.07. 吴越, 苏华楠, 黄爱军, 等. 柑橘黄龙病菌侵染对甜橙叶片糖代谢的影响[J]. 中国农业科学, 2015, 48(1):63-72. doi:10.3864/j.issn. 0578-1752.2015.01.07.
    [37] GUO H J. Research progress on osmotic adjustment material under water stress[J]. J Anhui Agric Sci, 2010, 38(15):7750-7753,7760. doi:10.3969/j.issn.0517-6611.2010.15.013. 郭华军. 水分胁迫过程中的渗透调节物质及其研究进展[J]. 安徽农业科学, 2010, 38(15):7750-7753,7760. doi:10.3969/j.issn.0517-6611.2010.15.013.
    [38] ZHU Y R, LIU M M, LI Y H, et al. Research advance in regulation mechanism of starch synthesis in plants[J]. Plant Physiol J, 2013, 49(12):1319-1325. doi:10.13592/j.cnki.ppj.2013.12.024. 朱晔荣, 刘苗苗, 李亚辉, 等. 植物淀粉生物合成调节机制的研究进展[J]. 植物生理学报, 2013, 49(12):1319-1325.
    [39] GIBON Y, PYL E T, SULPICE R, et al. Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods[J]. Plant Cell Environ, 2009, 32(7):859-874. doi:10.1111/j.1365-3040.2009.01965.x.
    [40] KRASENSKY J, JONAK C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks[J]. J Exp Bot, 2012, 63(4):1593-1608. doi:10.1093/jxb/err460.
    [41] XIE H T, YU M K, CHENG X R. Leaf non-structural carbohydrate allocation and C:N:P stoichiometry in response to light acclimation in seedlings of two subtropical shade-tolerant tree species[J]. Plant Physiol Biochem, 2018, 124:146-154. doi:10.1016/j.plaphy. 2018.01.013.
    [42] RICHARDSON A D, CARBONE M S, HUGGETT B A, et al. Distri-bution and mixing of old and new nonstructural carbon in two tem-perate trees[J]. New Phytol, 2015, 206(2):590-597. doi:10.1111/nph. 13273.
    [43] HARTMANN H, TRUMBORE S. Understanding the roles of non-structural carbohydrates in forest trees:From what we can measure to what we want to know[J]. New Phytol, 2016, 211(2):386-403. doi:10.1111/nph.13955.
    [44] WÜRTH M K R, PELÁEZ-RIEDL S, WRIGHT S J, et al. Non-structural carbohydrate pools in a tropical forest[J]. Oecologia, 2005, 143(1):11-24. doi:10.1007/s00442-004-1773-2.
    [45] YANG F, WANG Z M, ZHU D H, et al. Dynamic characteristics of non-structural carbohydrates in leaves of six woody plants under evergreen broad-leaved forest[J]. Chin J Appl Environ Biol, 2019, 25(5):1-13. doi:10.19675/j.cnki.1006-687x.2018.11018. 杨芳, 王振孟, 朱大海, 等. 常绿阔叶林林下6种木本植物叶片非结构性碳水化合物的动态特征[J]. 应用与环境生物学报, 2019, 25(5):1-13. doi:10.19675/j.cnki.1006-687x.2018.11018.
    Related
    Cited by
Get Citation

卜贤盼,纠凤凤,王锋堂,陈才志,杨福孙.五唇兰对PEG模拟的干旱胁迫响应研究[J].热带亚热带植物学报,2020,28(1):53~61

Copy
Share
Article Metrics
  • Abstract:833
  • PDF: 671
  • HTML: 497
  • Cited by: 0
History
  • Received:March 04,2019
  • Revised:May 13,2019
  • Online: January 15,2020
Article QR Code