Elevational Heterogeneity in Radial Growth-climate Association of Pinus massoniana in Southeastern China
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [39]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    To achieve a better understanding about the elevation heterogeneity in tree growth-climate association in southeastern China, four tree-ring width chronologies of Pinus massoniana from eastern foot of Wuyi Mountains in Fujian were established, and the relationship between radial growth and climate factors along elevation were investigated by bootstrapped correlation analysis and linear mixed effect model (LME). The results showed that radial growth of trees at higher elevation had higher sensitivity to climate and higher consistency between sites, mainly reflected as the positive correlations with the winter-spring temperature/sunshine conditions and precipitation in July. Moreover, the linear mixed effect model using three monthly climate factors, such as monthly mean daily maximum temperature in last December, monthly total sunshine hours in current January, and monthly total precipitation in current July, can explain 50% of total variance of radial growth at higher elevation, and the both fronts play a leading role in the model with cumulative relative contribution rate of 80%. So, it was suggested that the pre-growing season temperature/sunshine condition are the main factor regulating tree radial growth at high elevation, and that these trees might have higher sensitivity to future climate changes and forest management policies should take this into account. Moreover, the results showed that the trees at high elevation in subtropical forest had the potential to be used for tree ring-climate reconstruction.

    Reference
    [1] YIN Y H, MA D Y, WU S H. Climate change risk to forests in China associated with warming[J]. Sci Rep, 2018, 8:493. doi:10.1038/s 41598-017-18798-6.
    [2] PEROS M C, GAJEWSKI K, VIAU A E. Continental-scale tree popu-lation response to rapid climate change, competition and disturbance[J]. Glob Ecol Biogeogr, 2008, 17(5):658-669. doi:10.1111/j.1466-8238.2008.00406.x.
    [3] KHANDURI V P, SHARMA C M, SINGH S P. The effects of climate change on plant phenology[J]. Environmentalist, 2008, 28(2):143-147. doi:10.1007/s10669-007-9153-1.
    [4] HUANG J G, TARDIF J C, BERGERON Y, et al. Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest[J]. Glob Change Biol, 2010, 16(2):711-731. doi:10.1111/j.1365-2486.2009.01990.x.
    [5] JIANG X Y, HUANG J G, STADT K J, et al. Spatial climate-dependent growth response of boreal mixed wood forest in western Canada[J]. Glob Planet Change, 2016, 139:141-150. doi:10.1016/j. gloplacha. 2016.02.002.
    [6] dos SANTOS V A H F, FERREIRA M J, RODRIGUES J V F C, et al. Causes of reduced leaf-level photosynthesis during strong El Niño drought in a Central Amazon forest[J]. Glob Change Biol, 2018, 24(9):4266-4279. doi:10.1111/gcb.14293.
    [7] SLIK J W F. El Niño droughts and their effects on tree species compo-sition and diversity in tropical rain forests[J]. Oecologia, 2004, 141(1):114-120. doi:10.1007/s00442-004-1635-y.
    [8] WILLIAMSON G B, LAURANCE W F, OLIVEIRA A A, et al. Ama-zonian tree mortality during the 1997 El Niño drought[J]. Conserv Biol, 2000, 14(5):1538-1542. doi:10.1046/j.1523-1739.2000.99298.x.
    [9] NAKAGAWA M, TANAKA K, NAKASHIZUKA T, et al. Impact of severe drought associated with the 1997-1998 El Niño in a tropical forest in Sarawak[J]. J Trop Ecol, 2000, 16(3):355-367. doi:10.1017/S0266467400001450.
    [10] FANG K Y, GOU X H, CHEN F H, et al. The advance of dendro-ecology[J]. J Glaciol Geocryol, 2008, 30(5):825-834. 方克艳, 勾晓华, 陈发虎, 等. 树轮生态学研究进展[J]. 冰川冻土, 2008, 30(5):825-834.
    [11] MARTIN-BENITO D, PEDERSON N, KÖSE N, et al. Pervasive effects of drought on tree growth across a wide climatic gradient in the temperate forests of the Caucasus[J]. Glob Ecol Biogeogr, 2018, 27(11):1314-1325. doi:10.1111/geb.12799.
    [12] CHRISTIE D A, LARA A, BARICHIVICH J, et al. El Niño-Southern Oscillation signal in the world's highest-elevation tree-ring chrono-logies from the Altiplano, central Andes[J]. Palaeogeogr Palaeocl Palaeoecol, 2009, 281(3/4):309-319. doi:10.1016/j.palaeo.2007.11.013.
    [13] SAVVA Y, OLEKSYN J, REICH P B, et al. Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland[J]. Trees, 2006, 20(6):735-746. doi:10.1007/s00468-006-0088-9.
    [14] ZHANG H, SHAO X M, ZHANG Y. Research progress on the response of radial growth to climatic factors at different altitudes[J]. J Earth Environ, 2012, 3(3):845-854. 张慧, 邵雪梅, 张永. 不同海拔高度树木径向生长对气候要素响应的研究进展[J]. 地球环境学报, 2012, 3(3):845-854.
    [15] KANG Y X, LIU J H, DAI S F, et al. Characteristics of ring-width chronologies of Larix chinensis and their responses to climate change at different elevations in Taibai Mountain[J]. J NW Agric For Univ (Nat Sci), 2010, 38(12):141-147. 康永祥, 刘婧辉, 代拴发, 等. 太白山不同海拔太白红杉年轮生长对气候变化的响应[J]. 西北农林科技大学学报(自然科学版), 2010, 38(12):141-147.
    [16] LEI J P, XIAO W F, HUANG Z L, et al. Responses of ring width of Pinus massoniana to the climate change at different elevations in Zigui County, Three-Gorge Reservoir area[J]. Sci Silv Sin, 2009, 45(2):33-39. 雷静品, 肖文发, 黄志霖, 等. 三峡库区秭归县不同海拔马尾松径向生长对气候的响应[J]. 林业科学, 2009, 45(2):33-39.
    [17] LYU L, DENG X, ZHANG Q B. Elevation pattern in growth cohe-rency on the southeastern Tibetan Plateau[J]. PLoS One, 2016, 11(9):e0163201. doi:10.1371/journal.pone.0163201.
    [18] ZHOU Z X. Masson Pine in China[M]. Beijing:China Forestry Press, 2001. 周政贤. 中国马尾松[M]. 北京:中国林业出版社, 2001.
    [19] HOU H Y. Vegetation of China with reference to its geographical distribution[J]. Ann Miss Bot Gard, 1983, 70(3):509-548. doi:10.2307/2992085.
    [20] HOLMES R L, ADAMS R K, FRITTS H C. Tree-ring chronologies of western North America:California, eastern Oregon and northern Great Basin, with procedures used in the chronology development work, including users manuals for computer programs COFECHA and ARSTAN[R]. Tucson:Laboratory of Tree-Ring Research, University of Arizona, Tucson. Chronol Ser No VI, 1986.
    [21] COOK E R, HOLMES R L. Users manual for program ARSTAN[R]. Tucson:Laboratory of Tree-Ring Research, University of Arizona, Tucson, USA, 1986.
    [22] ZANG C. R:The bootRes package for response and correlation function analysis Dendrochronologia[CP]. Franco:Franco Biondi Dendroclimatic Calibration, 2012. doi:10.1016/j.dendro.2012.08.001.
    [23] LI D W, FANG K Y, LI Y J, et al. Climate, intrinsic water-use efficiency and tree growth over the past 150 years in humid subtropical China[J]. PLoS One, 2017, 12(2):e0172045. doi:10.1371/journal. pone.0172045.
    [24] CHEN F, YUAN Y J, YU S L, et al. Influence of climate warming and resin collection on the growth of Masson pine (Pinus massoniana) in a subtropical forest, southern China[J]. Trees, 2015, 29(5):1423-1430. doi:10.1007/s00468-015-1222-3.
    [25] LI L L, SHI J F, HOU X Y, et al. High altitude Pinus taiwanensis Hayata growth response to climate in Jiulongshan and Guniujiang, southeastern China[J]. Chin J Appl Ecol, 2014, 25(7):1849-1856. 李玲玲, 史江峰, 侯鑫源, 等. 中国东南高海拔黄山松生长对气候的响应——以浙江省九龙山和安徽省牯牛降为例[J]. 应用生态学报, 2014, 25(7):1849-1856.
    [26] BATES D M, MÄCHLER M, BOLKER B M, et al. Fitting linear mixed-effects models using lme4[J]. J Statis Software, 2015, 67(1):1-48. doi:10.18637/jss.v067.i01.
    [27] WINTER B. Linear models and linear mixed effects models in R with linguistic applications[M/OL]. arXiv:1308.5499, 2013.
    [28] Grömping U. Relative importance for linear regression in R:The Package relaimpo[J]. J Stat Software, 2006, 17(1):1-27.
    [29] FRITTS H C, SHATZ D J. Selecting and characterizing tree-ring chro-nologies for dendroclimatic analysis[J]. Tree-Ring Bull, 1975, 35:31-40.
    [30] ENSMINGER I, SCHMIDT L, LLOYD J. Soil temperature and intermittent frost modulate the rate of recovery of photosynthesis in Scots pine under simulated spring conditions[J]. New Phytol, 2008, 177(2):428-442. doi:10.1111/j.1469-8137.2007.02273.x.
    [31] ROSSI S, ANFODILLO T, ČUFAR K, et al. Pattern of xylem phenology in conifers of cold ecosystems at the northern Hemisphere[J]. Glob Change Biol, 2016, 22(11):3804-3813. doi:10.1111/gcb. 13317.
    [32] HUANG J G, GUO X L, ROSSI S. Intra-annual wood formation of subtropical Chinese red pine shows better growth in dry season than wet season[J]. Tree Physiol, 2018, 38(8):1225-1236. doi:10.1093/treephys/tpy046.
    [33] PELLERIN M, DELESTRADE A, MATHIEU G, et al. Spring tree phenology in the Alps:Effects of air temperature, altitude and local topography[J]. Eur J For Res, 2012, 131(6):1957-1965. doi:10.1007/s10342-012-0646-1.
    [34] ZHANG D P. A preliminary study of the relationships between the activity of stem cambium forming xylem and rainfall and temperature in Pinus massoniana[J]. J Fujian Coll For, 1994, 14(3):215-219. 张大鹏. 马尾松茎木质部产生与水热关系的初报[J]. 福建林学院学报, 1994, 14(3):215-219.
    [35] TRANQUILLINI W, HAVRANEK W M, ECKER P. Effects of atmo-spheric humidity and acclimation temperature on the temperature response of photosynthesis in young Larix decidua Mill.[J]. Tree Physiol, 1986, 1(1):37-45. doi:10.1093/treephys/1.1.37.
    [36] TANJA S, BERNINGER F, VESALA T, et al. Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring[J]. Glob Change Biol, 2003, 9(10):1410-1426. doi:10.1046/j.1365-2486.2003.00597.x.
    [37] OLEKSYN J, ZYTKOWIAK R, KAROLEWSKI P, et al. Genetic and environmental control of seasonal carbohydrate dynamics in trees of diverse Pinus sylvestris populations[J]. Tree Physiol, 2000, 20(12):837-847. doi:10.1093/treephys/20.12.837.
    [38] ROSSI S, DESLAURIERS A, GRIÇAR J, et al. Critical temperatures for xylogenesis in conifers of cold climates[J]. Glob Ecol Biogeogr, 2008, 17(6):696-707. doi:10.1111/j.1466-8238.2008.00417.x.
    [39] WU S H, JANSSON P E, KOLARI P. The role of air and soil tempe-rature in the seasonality of photosynthesis and transpiration in a boreal Scots pine ecosystem[J]. Agric For Meteorol, 2012, 156:85-103. doi:10.1016/j.agrformet.2012.01.006.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

黎敬业,黄建国,梁寒雪,蒋少伟,周鹏,郭霞丽,李军堂.中国东南部不同海拔亚热带森林中马尾松径向生长对气候的响应[J].热带亚热带植物学报,2019,27(6):633~641

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 05,2019
  • Revised:February 18,2019
  • Online: November 29,2019
Article QR Code