Cloning and Expression Analysis of MADS-box Gene HAM23-like in Helianthus annuus
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [44]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    MADS-box family proteins are important transcription factors associated with the regulation of growth and development, especially in floral development of higher plants. HAM23-like, a new member of the MADS-box genes, was cloned from Helianthus annuus. The bioinformatic results revealed that HAM23-like gene had an open reading frame of 831 bp, encoding a protein with 276 amino acid; the protein possessed a relative molecular weight of 30.52 kD and a theoretical isoelectric point of 9.42. The analysis of phylogenetic tree showed that HAM23-like was closely homologous to the AGL18 gene of Arabidopsis thaliana. Moreover, the qRT-PCR results indicated that the HAM 23-like gene were highly expressed in flower and mature fruit in tissue expression pattern, and in different floral organ of flowering day, the expression of HAM23-like reached the highest level in stamen. In addition, the expression of the HAM23-like gene was gradually raised during the floral development, and reached the highest expression on 5 days after flower blooming. These results implied that HAM23-like gene would be involved in the later stage of floral organs development and the earlier stage of achene development in H. annuus. The results of this study could provide some preliminary data and theoretical basis for further study, especially, it will help to explore the regulatory role of HAM23-like in floral development and achene formation in H. annuus.

    Reference
    [1] LIU J W, SUN C H, LIU N. The ABC model and the quartet model of floral organ identity[J]. Chin Bull Bot, 2004, 21(3):346-351. doi:10. 3969/j.issn.1674-3466.2004.03.014. 刘建武, 孙成华, 刘宁. 花器官决定的ABC模型和四因子模型[J]. 植物学通报, 2004, 21(3):346-351. doi:10.3969/j.issn.1674-3466. 2004.03.014.
    [2] WANG B, WU X J, XIE Z H, et al. Study on the ABC model for flower development[J]. Chin Agric Sci Bull, 2003, 19(5):78-82,118. 王彬, 吴先军, 谢兆辉, 等. 花器官发育的ABC模型研究进展[J]. 中国农学通报, 2003, 19(5):78-82,118.
    [3] LAWTON-RAUH A L, ALVAREZ-BUYLLA E R, PURUGGANAN M D. Molecular evolution of flower development[J]. Trends Ecol Evol, 2000, 15(4):144-149. doi:10.1016/S0169-5347(99)01816-9.
    [4] THEISSEN G. Development of floral organ identity:Stories from the MADS house[J]. Curr Opin Plant Biol, 2001, 4(1):75-85. doi:10. 1016/S1369-5266(00)00139-4.
    [5] THEISSEN G, BECKER A, DI ROSA A, et al. A short history of MADS-box genes in plants[J]. Plant Mol Biol, 2000, 42(1):115-149. doi:10.1023/A:1006332105728.
    [6] BECKER A, THEIßEN G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants[J]. Mol Phylogenet Evol, 2003, 29(3):464-489. doi:10.1016/S1055-7903(03) 00207-0.
    [7] KAUFMANN K, MELZER R, THEIßEN G. MIKC-type MADS-domain proteins:Structural modularity, protein interactions and network evolution in land plants[J]. Gene, 2005, 347(2):183-198. doi:10.1016/j.gene.2004.12.014.
    [8] MESSENGUY F, DUBOIS E. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development[J]. Gene, 2003, 316:1-21. doi:10.1016/S0378-1119(03) 00747-9.
    [9] SOMMER H, BELTRÁN J P, HUIJSER P, et al. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus:The protein shows homology to transcription factors[J]. EMBO J, 1990, 9(3):605-613. doi:10.1002/j.1460-2075.1990.tb08152.x.
    [10] YANOFSKY M F, MA H, BOWMAN J L, et al. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors[J]. Nature, 1990, 346(6279):35-39. doi:10.1038/346035a0.
    [11] NORMAN C, RUNSWICK M, POLLOCK R, et al. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element[J]. Cell, 1988, 55(6):989-1003. doi:10.1016/0092-8674(88)90244-9.
    [12] de BODT S, RAES J, FLORQUIN K, et al. Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants[J]. J Mol Evol, 2003, 56(5):573-586. doi:10.1007/s00239-002-2426-x.
    [13] ALVAREZ-BUYLLA E R, LILJEGREN S J, PELAZ S, et al. MADS-box gene evolution beyond flowers:Expression in pollen, endosperm, guard cells, roots and trichomes[J]. Plant J, 2000, 24(4):457-466. doi:10.1111/j.1365-313X.2000.00891.x.
    [14] KOO S C, BRACKO O, PARK M S, et al. Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box gene AGAMOUS-LIKE6[J]. Plant J, 2010, 62(5):807-816. doi:10.1111/j.1365-313X.2010.04192.x.
    [15] LI S, XU H L, JU Z, et al. The RIN-MC Fusion of MADS-box transcription factors has transcriptional activity and modulates expression of many ripening genes[J]. Plant Physiol, 2018, 176(1):891-909. doi:10.1104/pp.17.01449.
    [16] LI N, HUANG B W, TANG N, et al. The MADS-box gene SlMBP21 regulates sepal size mediated by ethylene and auxin in tomato[J]. Plant Cell Physiol, 2017, 58(12):2241-2256. doi:10.1093/pcp/pcx158.
    [17] SHULGA O A, SHCHENNIKOVA A V, ANGENENT G C, et al. MADS-box genes controlling inflorescence morphogenesis in sunflower[J]. Ontogenez, 2008, 39(1):4-7.
    [18] SHULGA O A, MITIOUCHKINA T Y, SHCHENNIKOVA A V, et al. Chrysanthemum modification via ectopic expression of sunflower MADS-box gene HAM59[J]. Acta Hort, 2015(1087):105-111. doi:10. 17660/ActaHortic.2015.1087.11.
    [19] LI Z W, ZHU Y. Research advance of plant flowering regulation mechnism[J]. Biol Teachn, 2011, 36(6):6-7. doi:10.3969/j.issn.1004-7549.2011.06.003. 李朝炜, 朱昀. 植物开花调控机理研究进展[J]. 生物学教学, 2011, 36(6):6-7. doi:10.3969/j.issn.1004-7549.2011.06.003.
    [20] DAI C, PENG Z S, YANG Z J, et al. Cloning and expression analysis of glucosyltransferase gene TaUGT73D1 in wheat[J]. Mol Plant Breed, 2017, 15(6):2048-2057. doi:10.13271/j.mpb.015.002048. 代畅, 彭正松, 杨在君, 等. 小麦糖基转移酶基因TaUGT73D1的克隆及表达分析[J]. 分子植物育种, 2017, 15(6):2048-2057. doi:10. 13271/j.mpb.015.002048.
    [21] HE Y H, AMASINO R M. Role of chromatin modification in flowering-time control[J]. Trends Plant Sci, 2005, 10(1):30-35. doi:10.1016/j. tplants.2004.11.003.
    [22] LI Y Y, WANG L, SU Z G, et al. The molecular mechanism of MADS-box genes regulates floral formation and flowering in plant[J]. Genom Appl Biol, 2010, 29(6):1122-1132. doi:10.3969/gab.029.001122. 李元元, 王鲁, 苏振刚, 等. MADS-box基因控制植物成花的分子机理[J]. 基因组学与应用生物学, 2010, 29(6):1122-1132. doi:10. 3969/gab.029.001122.
    [23] ADAMCZYK B J, LEHTI-SHIU M D, FERNANDEZ D E. The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis[J]. Plant J, 2007, 50(6):1007-1019. doi:10.1111/j.1365-313X.2007.03105.x.
    [24] BORNER R, KAMPMANN G, CHANDLER J, et al. A MADS domain gene involved in the transition to flowering in Arabidopsis[J]. Plant J, 2000, 24(5):591-599. doi:10.1046/j.1365-313x.2000.00906.x.
    [25] HARTMANN U, HÖHMANN S, NETTESHEIM K, et al. Molecular cloning of SVP:A negative regulator of the floral transition in Arabidopsis[J]. Plant J, 2000, 21(4):351-360. doi:10.1046/j.1365-313X.2000.00682.x.
    [26] LEE H, SUH S S, PARK E, et al. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis[J]. Genes Dev, 2000, 14(18):2366-2376. doi:10.1101/gad.813600.
    [27] MICHAELS S D, DITTA G, GUSTAFSON-BROWN C, et al. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization[J]. Plant J, 2003, 33(5):867-874. doi:10. 1046/j.1365-313X.2003.01671.x.
    [28] MICHAELS S D, AMASINO R M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering[J]. Plant Cell, 1999, 11(5):949-956. doi:10.1105/tpc.11.5.949.
    [29] RATCLIFFE O J, KUMIMOTO R W, WONG B J, et al. Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family:MAF2 prevents vernalization by short periods of cold[J]. Plant Cell, 2003, 15(5):1159-1169. doi:10.1105/tpc.009506.
    [30] RATCLIFFE O J, NADZAN G C, REUBER T L, et al. Regulation of flowering in Arabidopsis by an FLC homologue[J]. Plant Physiol, 2001, 126(1):122-132. doi:10.1104/pp.126.1.122.
    [31] SCORTECCI K C, MICHAELS S D, AMASINO R M. Identification of a MADS-box gene, FLOWERING LOCUS M, that represses flowering[J]. Plant J, 2001, 26(2):229-236. doi:10.1046/j.1365-313X.2001.01024.x.
    [32] ZHANG H M, FORDE B G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture[J]. Science, 1998, 279(5349):407-409. doi:10.1126/science.279.5349.407.
    [33] FERRÁNDIZ C, LILJEGREN S J, YANOFSKY M F. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development[J]. Science, 2000, 289(5478):436-438. doi:10.1126/science.289.5478.436.
    [34] GU Q, FERRÁNDIZ C, YANOFSKY M F, et al. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development[J]. Development, 1998, 125(8):1509-1517.
    [35] LILJEGREN S J, DITTA G S, ESHED Y, et al. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis[J]. Nature, 2000, 404(6779):766-770. doi:10.1038/35008089.
    [36] PINYOPICH A, DITTA G S, SAVIDGE B, et al. Assessing the redundancy of MADS-box genes during carpel and ovule development[J]. Nature, 2003, 424(6944):85-88. doi:10.1038/nature01741.
    [37] NESI N, DEBEAUJON I, JOND C, et al. The TRANSPARENT TESTA16locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat[J]. Plant Cell, 2002, 14(10):2463-2479. doi:10.1105/tpc. 004127.
    [38] MARTINEZ-CASTILLA L P, ALVAREZ-BUYLLA E R. Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny[J]. Proc Natl Acad Sci USA, 2003, 100(23):13407-13412. doi:10.1073/pnas.1835864100.
    [39] LITT A, IRISH V F. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage:Implications for the evolution of floral development[J]. Genetics, 2003, 165(2):821-833.
    [40] CAUSIER B, CASTILLO R, ZHOU J L, et al. Evolution in action:Following function in duplicated floral homeotic genes[J]. Curr Biol, 2005, 15(16):1508-1512. doi:10.1016/j.cub.2005.07.063.
    [41] IRISH V F, LITT A. Flower development and evolution:Gene duplication, diversification and redeployment[J]. Curr Opin Genet Dev, 2005, 15(4):454-460. doi:10.1016/j.gde.2005.06.001.
    [42] PAŘENICOVÁ L, DE FOLTER S, KIEFFER M, et al. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis:New openings to the MADS world[J]. Plant Cell, 2003, 15(7):1538-1551.
    [43] NAM J, KIM J, LEE S, et al. Type I MADS-box genes have experienced faster birth-and-death evolution than type Ⅱ MADS-box genes in angiosperms[J]. Proc Natl Acad Sci USA, 2004, 101(7):1910-1915. doi:10.1073/pnas.0308430100.
    [44] FERNANDEZ D E, WANG C T, ZHENG Y M, et al. The MADS-domain factors AGAMOUS-LIKE15 and AGAMOUS-LIKE18, along with SHORT VEGETATIVE PHASE and AGAMOUS-LIKE24, are necessary to block floral gene expression during the vegetative phase[J]. Plant Physiol, 2014, 165(4):1591-1603. doi:10.1104/pp.114.242990.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

苏周,吴雨,雷豆,韦小英,何卓远,杨军,邹建.向日葵MADS-Box基因HAM23-like克隆和表达分析[J].热带亚热带植物学报,2019,27(4):423~431

Copy
Share
Article Metrics
  • Abstract:777
  • PDF: 727
  • HTML: 512
  • Cited by: 0
History
  • Received:November 03,2018
  • Revised:March 04,2019
  • Online: August 08,2019
Article QR Code