Carbon Source/Sink Dynamics and Trend of Larix chinensis in Northern Slope of Qinling Mountains Based on BIOME-BGC Model
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [39]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Climate change and elevated CO2 concentration affect productivity and carbon balance of forest ecosystems. Timberline tree, Larix chinensis is extremely sensitive to climate change. In order to understand the carbon source/sink dynamics, the BIOME-BGC model was used to simulate the productivity, carbon storage and carbon use efficiency (CUE) of Larix chinensis in the northern slope of Qinling Mountains during 1959-2016, and the future trend of carbon source/sink function was projected by climate scenario setting method. The results showed that in the past 58 years, the average NPP, GPP and NEP were 328.59, 501.56 and 31.42 g C m-2a-1, respectively. The average carbon storage was 35.38 kg C m-2a-1, and the average CUE was 0.65. Except that 1960-1961, 1969-1970 and 1997-1999 were "carbon source" years, the rest were "carbon sink" years, showing the characteristics of "carbon source-carbon sink-carbon source" during the whole year. Overall, carbon storage increased and the potential carbon sequestration capacity was relatively stable. The positive effects of GPP, NPP and carbon storage were in the order of temperature increment > CO2 concentration enhancement, while the opposite effect of NEP had adverse order. Rainfall enhancement had counteraction on productivity and carbon storage, and temperature increment had a negative effect on CUE. Temperature and CO2 concentration were the limiting factors for the growth of L. chinensis in northern slope of Qinling Mountains, and the limitation of temperature was stronger than that of CO2 concentration. In the future, the increase of temperature or CO2 concentration will benefit the function of carbon sink, and the increase of precipitation will weaken the effect of carbon sink. In the RCP4.5 and RCP8.5 scenarios, the productivity and carbon storage of L. chinensis showed an upward trend in 21 century, and RCP8.5 increased slightly more than RCP4.5. The potential carbon sequestration capacity was still strong. January to March, October to December would be "carbon source" month, and May to September would be "carbon sink" month. These revealed the effects of temperature, precipitation and CO2 concentration on carbon source/sink of L. chinensis under the background of climate change. The increase of temperature and CO2 concentration were the promoting factor for carbon sink of L. chinensis, while the increase of precipitation was the limiting factor.

    Reference
    [1] Chiew F H S, Whetton P H, Mcmahon T A, et al. Simulation of the impacts of climate change on runoff and soil moisture in Australian catchments[J]. J Hydrol, 1995, 167(1/2/3/4):121-147. doi:10.1016/0022-1694(94)02649-V.
    [2] ZHANG W H, WANG Y P, KANG Y X, et al. Study on the relationship between Larix chinensis population's structure and environment factors[J]. Acta Ecol Sin, 2004, 24(1):41-47. doi:10.3321/j.issn:1000-0933. 2004.01.007.张文辉, 王延平, 康永祥, 等. 太白红杉种群结构与环境的关系[J]. 生态学报, 2004, 24(1):41-47. doi:10.3321/j.issn:1000-0933.2004.01. 007.
    [3] QIN J, BAI H Y, LI S H, et al. Differences in growth response of Larix chinensis to climate change at the upper timberline of southern and northern slopes of Mt. Taibai in central Qinling Mountains, China[J]. Acta Ecol Sin, 2016, 36(17):5333-5342. doi:10.5846/stxb201502060304.秦进, 白红英, 李书恒, 等. 太白山南北坡高山林线太白红杉对气候变化的响应差异[J]. 生态学报, 2016, 36(17):5333-5342. doi:10. 5846/stxb201502060304.
    [4] LI S H, HOU L, SHI A R, et al. Response of Larix chinensis forest ecosystem to climate change based on Biome-BGC model and tree rings[J]. Acta Ecol Sin, 2018, 38(20):7435-7446. doi:10.5846/stxb 201710161851.李书恒, 侯丽, 史阿荣, 等. 基于Biome-BGC模型及树木年轮的太白红杉林生态系统对气候变化的响应研究[J]. 生态学报, 2018, 38(20):7435-7446. doi:10.5846/stxb201710161851.
    [5] QI W W, NIU H S, WANG S P, et al. Simulation of effects of warming on carbon budget in alpine meadow ecosystem on the Tibetan Plateau[J]. Acta Ecol Sin, 2012, 32(6):1713-1722. doi:10.5846/stxb201102250215.亓伟伟, 牛海山, 汪诗平, 等. 增温对青藏高原高寒草甸生态系统固碳通量影响的模拟研究[J]. 生态学报, 2012, 32(6):1713-1722. doi:10.5846/stxb201102250215.
    [6] XU L J, PENG H, CHEN C G, et al. Quantitative analysis of the Larix chinensis forest's distribution at Qinling mountains and the character of the alpine timberline at Taibai mountain[J]. Acta Bot Boreali-Occid Sin, 2005, 25(5):968-972. doi:10.3321/j.issn:1000-4025.2005.05.022.许林军, 彭鸿, 陈存根, 等. 秦岭太白红杉林分布及太白山高山林线特征的定量分析[J]. 西北植物学报, 2005, 25(5):968-972. doi:10.3321/j.issn:1000-4025.2005.05.022.
    [7] MIAO X H, ZHAO X J, MONG H X. Effect prediction of climate change on distribution of Larix chinensis in Qinling mountains[J]. Soil Water Conserv China, 2018(10):48-52. doi:10.14123/j.cnki.swcc. 2018.0229.妙旭华, 赵晓冏, 孟浩贤. 气候变化对秦岭太白红杉分布影响预测[J]. 中国水土保持, 2018(10):48-52. doi:10.14123/j.cnki.swcc.2018. 0229.
    [8] LIU R J. Larix chinensis's NDVI Variation and its response to climate change[D]. Xi'an:Northwest University, 2016:9-11.刘荣娟. 气候变化背景下秦岭太白红杉的时空响应[D]. 西安:西北大学, 2016:9-11.
    [9] WHITE M A, THORNTON P E, RUNNING S W, et al. Parameteri-zation and sensitivity analysis of the BIOME-BGC terrestrial eco-system model:Net primary production controls[J]. Earth Interact, 2000, 4(3):1-85. doi:10.1175/1087-3562(2000)004<0003:PASAOT> 2.0.CO;2.
    [10] PENG J J, HE X Y, CHEN Z J, et al. Responses of Pinus tabulaeformis forest ecosystem in North China to climate change and elevated CO2:A simulation based on BIOME-BGC model and tree-ring data[J]. Chin J Appl Ecol, 2012, 23(7):1733-1742. doi:10.13287/j.1001-9332.2012. 0200.彭俊杰, 何兴元, 陈振举, 等. 华北地区油松林生态系统对气候变化和CO2浓度升高的响应——基于BIOME-BGC模型和树木年轮的模拟[J]. 应用生态学报, 2012, 23(7):1733-1742. doi:10.13287/j.1001-9332.2012.0200.
    [11] HE L H, WANG H Y, WANG L, et al. Response of net primary productivity of Larix olgensis forest ecosystem to climate change[J]. J Beijing For Univ, 2015, 37(9):28-36. doi:10.13332/j.1000-1522.20140439.何丽鸿, 王海燕, 王璐, 等. 长白落叶松林生态系统净初级生产力对气候变化的响应[J]. 北京林业大学学报, 2015, 37(9):28-36. doi:10.13332/j.1000-1522.20140439.
    [12] LIU R J, BAI H Y, MA X P, et al. Temperature variation and spatial difference in the protected area of Taibai Mountain[J]. Chin J Agro-meteorol, 2016, 37(1):1-10.刘荣娟, 白红英, 马新萍, 等. 太白山保护区气温变化及其空间差异性分析[J]. 中国农业气象, 2016, 37(1):1-10.
    [13] GUO Z Y. Shaanxi Soil[M]. Beijing:Science Press, 1992:141-161.郭兆元. 陕西土壤[M]. 北京:科学出版社, 1992:141-161.
    [14] LIU Z L. Spatial and temporal dynamics of leaf area index in typical forests in northeastern China[D]. Harbin:Northeast Forestry Univer-sity, 2015:3-5.刘志理. 东北典型森林叶面积指数的时空动态[D]. 哈尔滨:东北林业大学, 2015:3-5.
    [15] ZENG X P, ZHAO P, RAO X Q, et al. Measurement of leaf area index of three plantations and their seasonal changes in Heshan hilly land[J]. J Beijing For Univ, 2008, 30(5):33-38. doi:10.13332/j.1000-1522. 2008.05.022.曾小平, 赵平, 饶兴权, 等. 鹤山丘陵3种人工林叶面积指数的测定及其季节变化[J]. 北京林业大学学报, 2008, 30(5):33-38. doi:10.13332/j.1000-1522.2008.05.022.
    [16] LI Y Z, ZHANG T L, LIU Q Y, et al. Temporal and spatial hetero-geneity analysis of optimal value of sensitive parameters in ecological process model:The BIOME-BGC model as an example[J]. Chin J Appl Ecol, 2018, 29(1):84-92. doi:10.13287/j.1001-9332.201801. 016.李一哲, 张廷龙, 刘秋雨, 等. 生态过程模型敏感参数最优取值的时空异质性分析——以BIOME-BGC模型为例[J]. 应用生态学报, 2018, 29(1):84-92. doi:10.13287/j.1001-9332.201801.016.
    [17] RUNNING S W, HUNT JR E H. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models[M]//EHLERINGER J R, FIELD C B. Scaling Physiological Processes:Leaf to Globe. San Diego:Academic Press, 1993:141-158. doi:10.1016/B978-0-12-233440-5.50014-2.
    [18] PENG S Z. Study on growth processes and ability of carbon seque-stration of Qinghai spruce forest in Qilian Mountains[D]. Lanzhou:Lanzhou University, 2015:40-42.彭守璋. 祁连山区青海云杉林生长过程及其固碳能力研究[D]. 兰州:兰州大学, 2015:40-42.
    [19] FAN M R. The response of net primary productivity on climate change in forest ecosystem of Beijing mountain area[D]. Beijing:Beijing Forestry University, 2011:38-42.范敏锐. 北京山区森林生态系统净初级生产力对气候变化的响应[D]. 北京:北京林业大学, 2011:38-42.
    [20] YUAN B, BAI H Y, ZHANG J, et al. Vegetation net primary productivity in Qinling Mountains and its response to climate change[J]. Bull Bot Res, 2013, 33(2):225-231. doi:10.7525/j.issn.1673-5102. 2013.02.018.袁博, 白红英, 章杰, 等. 秦岭山地植被净初级生产力及对气候变化的响应[J]. 植物研究, 2013, 33(2):225-231. doi:10.7525/j.issn. 1673-5102.2013.02.018.
    [21] ZHU X L, LI S H, BAI H Y, et al. Reconstruction of July NDVI over 172 years based on tree-ring width of Larix chinensis in Taibai Mountain Nature Reserve, China[J]. Chin J Appl Ecol, 2018, 29(7):2382-2390. doi:10.13287/j.1001-9332.201807.002.朱显亮, 李书恒, 白红英, 等. 基于太白红杉树轮宽度重建近172年太白山自然保护区7月NDVI[J]. 应用生态学报, 2018, 29(7):2382-2390. doi:10.13287/j.1001-9332.201807.002.
    [22] LI L, HE X J, HU L L, et al. Simulation of the carbon cycle of Larix chinensis forest during 1958 and 2008 at Taibai Mountain, China[J]. Acta Ecol Sin, 2013, 33(9):2845-2855. doi:10.5846/stxb201202130189.李亮, 何晓军, 胡理乐, 等. 1958-2008年太白山太白红杉林碳循环模拟[J]. 生态学报, 2013, 33(9):2845-2855. doi:10.5846/stxb201202130189.
    [23] WANG J, ZHUO J, HE H J, et al. Changes of vegetation net primary productivity and its driving factors from 2000 to 2013 in Qinling mountainous area[J]. J NW For Univ, 2016, 31(5):238-245.王娟, 卓静, 何慧娟, 等. 2000-2013年秦岭林区植被净初级生产力时空分布特征及其驱动因素[J]. 西北林学院学报, 2016, 31(5):238-245.
    [24] IPCC. Working Group I Contribution to the IPCC fifth assessment report. Climate change 2013:The physical science basis:Final draft underlying scientific-technical assessment[R/OL].[2013-10-30]. http://www.climatechange2013.org/images/uploads/WGIAR5_WGI-12Doc2b_FinalDraft_Chapter01.pdf.
    [25] Compiling Committee of the Third National Assessment Report on Climate Change. Third National Assessment Report on Climate Change[M]. Beijing:Science Press, 2015:213-231.《第三次气候变化国家评估报告》编写委员会. 第三次气候变化国家评估报告[M]. 北京:科学出版社, 2015:213-231.
    [26] DENG L J. Simulation and projection of climate change over Qinling Mountains using multi-model based on statistical downscaling[D]. Xi'an:Northwest University, 2017:36-39.邓丽姣. 基于统计降尺度的秦岭地区降水和气温多模式模拟与预估[D]. 西安:西北大学, 2017:36-39.
    [27] HONG C Q, JIN X B, CHEN C C, et al. Overview on estimation models of land net primary productivity integrating remote sensing data[J]. Prog Geogr, 2017, 36(8):924-939. doi:10.18306/dlkxjz.2017. 08.002.洪长桥, 金晓斌, 陈昌春, 等. 集成遥感数据的陆地净初级生产力估算模型研究综述[J]. 地理科学进展, 2017, 36(8):924-939. doi:10.18306/dlkxjz.2017.08.002.
    [28] CHEN L, LI S H, HOU L, et al. Response of Larix chinensis radial growth to climatic factors based on the Vaganov-Shashkin model[J]. Chin J Appl Ecol, 2017, 28(8):2470-2480. doi:10.13287/j.1001-9332. 201708.038.陈兰, 李书恒, 侯丽, 等. 基于Vaganov-Shashkin模型的太白红杉径向生长对气候要素的响应[J]. 应用生态学报, 2017, 28(8):2470-2480. doi:10.13287/j.1001-9332.201708.038.
    [29] LIU W, CAO M M, SONG J X, et al. Spatio-temporal distribution and temporal periodicity of annual precipitation in Shaanxi Province[J]. Arid Land Geogr, 2013, 36(5):865-874. doi:10.13826/j.cnki.cn65-1103/x.2013.05.009.刘闻, 曹明明, 宋进喜, 等. 陕西年降水量变化特征及周期分析[J]. 干旱区地理, 2013, 36(5):865-874. doi:10.13826/j.cnki.cn65-1103/x. 2013.05.009.
    [30] OGAWA K, TAKANO Y. Seasonal courses of CO2 exchange and carbon balance in fruits of Cinnamomum camphora[J]. Tree Physiol, 1997, 17(6):415-420. doi:10.1093/treephys/17.6.415.
    [31] ZHU W Z. Advances in the carbon use efficiency of forest[J]. Chin J Plant Ecol, 2013, 37(11):1043-1058. doi:10.3724/SP.J.1258.2013.00108.朱万泽. 森林碳利用效率研究进展[J]. 植物生态学报, 2013, 37(11):1043-1058. doi:10.3724/SP.J.1258.2013.00108.
    [32] DUAN Y. The difference response to climate of Larix chinensis at difference altitudes and temperature reconstruction[D]. Xi'an:North-west University, 2016:26-49.段媛. 不同海拔太白红杉年轮对气候响应差异及气温重建[D]. 西安:西北大学, 2016:26-49.
    [33] LIN W, HU L L, ZHENG B F, et al. Carbon storage estimation of timberline tree Larix chinensis[J]. Res Environ Sci, 2010, 23(12):1470-1474. doi:10.13198/j.res.2010.12.28.linw.019.林伟, 胡理乐, 郑博福, 等. 林线树种太白红杉碳储量估算[J]. 环境科学研究, 2010, 23(12):1470-1474. doi:10.13198/j.res.2010.12.28. linw.019.
    [34] MA X P, BAI H Y, HE Y N, et al. The vegetation remote sensing phenology of Qinling Mountains based on NDVI and it's response to temperature:Taking within the territory of Shaanxi as an example[J]. Sci Geogr Sin, 2015, 35(12):1616-1621. doi:10.13249/j.cnki.sgs.2015. 12.016.马新萍, 白红英, 贺映娜, 等. 基于NDVI的秦岭山地植被遥感物候及其与气温的响应关系——以陕西境内为例[J]. 地理科学, 2015, 35(12):1616-1621. doi:10.13249/j.cnki.sgs.2015.12.016.
    [35] YAN B Q, LIN W Z, LIU Q J, et al. Age-dependent radial growth responses of Larix chinensis to climatic factors in Qinling Mountains, northwestern China[J]. J Beijing For Univ, 2017, 39(9):58-65. doi:10.13332/j.1000-1522.20170161.闫伯前, 林万众, 刘琪璟, 等. 秦岭不同年龄太白红杉径向生长对气候因子的响应[J]. 北京林业大学学报, 2017, 39(9):58-65. doi:10.13332/j.1000-1522.20170161.
    [36] KANG Y X, LIU J H, DAI S F, et al. Characteristics of ring-width chronologies of Larix chinensis and their responses to climate change at different elevations in Taibai Mountain[J]. J NW Agric for Univ (Nat Sci), 2010, 38(12):141-147. doi:10.13207/j.cnki.jnwafu.2010.12. 026.康永祥, 刘婧辉, 代拴发, 等. 太白山不同海拔太白红杉年轮生长对气候变化的响应[J]. 西北农林科技大学学报(自然科学版), 2010, 38(12):141-147. doi:10.13207/j.cnki.jnwafu.2010.12.026.
    [37] LIU J H. The responses of tree line width of Larix chinensis in the regions of alpine timberline to climate change[D]. Yangling:North-west Agricultural and Forestry University, 2010:15-33.刘婧辉. 高山林线树种太白红杉年轮生长对气候变化的响应[D]. 杨凌:西北农林科技大学, 2010:15-33.
    [38] SHI A R, LI S H, HOU L, et al. Research on the growth law of Larix chinensis in the Qinling mountains on the basis of the tree-ring width[J]. J Sichuan For Sci Technol, 2018, 39(2):1-6. doi:10.16779/j.cnki. 1003-5508.2018.02.001.史阿荣, 李书恒, 侯丽, 等. 基于树木年轮宽度的秦岭太白红杉(Larix chinensis)生长变化规律研究[J]. 四川林业科技, 2018, 39(2):1-6. doi:10.16779/j.cnki.1003-5508.2018.02.001.
    [39] HE L H. Response of net primary productivity of Larix olgensis forest to climate change in northeast China[D]. Beijing:Beijing Forestry University, 2015:46-49.何丽鸿. 东北地区长白落叶松林净初级生产力对气候变化的响应[D]. 北京:北京林业大学, 2015:46-49.
    Cited by
Get Citation

张越,刘康,张红娟,张丹丹,陈慕亚.基于BIOME-BGC模型的秦岭北坡太白红杉林碳源/汇动态和趋势研究[J].热带亚热带植物学报,2019,27(3):235~249

Copy
Share
Article Metrics
  • Abstract:1061
  • PDF: 903
  • HTML: 550
  • Cited by: 0
History
  • Received:October 30,2018
  • Online: May 28,2019
Article QR Code