Different Leaf Construction Strategies in Evergreen and Deciduous Species of Magnoliaceae
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [33]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to reveal the ecophysiological strategies of leaf construction in Magnoliaceae evergreen and deciduous species, the characters related with leaf lifespan and leaf construction cost of six Magnoliaceae species, including three deciduous species, Yulania cylindrical, Y. denudate and Y. jigongshanensis, and three evergreen species, Magnolia grandiflora, Michelia figo and M. shiluensis were compared. The results showed that construction cost per leaf area (CCarea) of deciduous species was significantly lower than that of evergreen species, but their construction cost per leaf dry mass (CCmass) was similar. Nitrogen and phosphorous concentration (Nmass, Pmass) in leaves of deciduous species were significantly higher than that of evergreen species. Evergreen species had significantly low specific leaf area (SLA) but long leaf lifespan (LLS). There were a negative correlation between CCarea and LLS, whereas other three traits (SLA, Nmass and Pmass) had a positive correlation with LLS. In conclusion, deciduous species adopted the low-cost strategy, with short leaf lifespan and high SLA to obtain more light source and nutrition storage compared to evergreen species. It was revealed the ecophysiological strategy of deciduous species of Magnoliaceae to adapt short growth season and low hydrothermal condition in north subtropics.

    Reference
    [1] WILLIAMS K, PERCIVAL F, MERINO J, et al. Estimation of tissue construction cost from heat of combustion and organic nitrogen content[J]. Plant Cell Environ, 1987, 10(9):725-734. doi:10.1111/1365-3040. ep11604754.
    [2] OSUNKOYA O O, BAYLISS D, PANETTA F D, et al. Leaf trait co-ordination in relation to construction cost, carbon gain and resource-use efficiency in exotic invasive and native woody vine species[J]. Ann Bot, 2010, 106(2):371-380. doi:10.1093/aob/mcq119.
    [3] VILLAR R, MERINO J. Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems[J]. New Phytol, 2001, 151(1):213-226. doi:10.1046/j.1469-8137.2001.00147.x.
    [4] GRIFFIN K L. Calorimetric estimates of construction cost and their use in ecological studies[J]. Funct Ecol, 1994, 8(5):551-562. doi:10. 2307/2389915.
    [5] WANG R F, FENGY L. The effects of leaf phenology, construction cost and payback time on carbon accumulation in invasive plants[J]. Acta Ecol Sin, 2009, 29(5):2568-2577. doi:10.3321/j.issn:1000-0933. 2009.05.046.王睿芳, 冯玉龙. 叶物候、构建消耗和偿还时间对入侵植物碳积累的影响[J]. 生态学报, 2009, 29(5):2568-2577. doi:10.3321/j.issn:1000-0933.2009.05.046.
    [6] NAVAS M L, DUCOUT B, ROUMET C, et al. Leaf life span, dynamics and construction cost of species from mediterranean old-fields differing in successional status[J]. New Phytol, 2003, 159(1):213-228. doi:10. 1046/j.1469-8137.2003.00790.x.
    [7] XIAO Y H, LIU S R, TONG F C, et al. Dominant species in subtro-pical forests could decrease photosynthetic N allocation to carboxy-lation and bioenergetics and enhance leaf construction costs during forest succession[J]. Front Plant Sci, 2018, 9:117. doi:10.3389/fpls. 2018.00117.
    [8] ZHU S D, SONG J J, LI R H, et al. Plant hydraulics and photo-synthesis of 34 woody species from different successional stages of subtropical forests[J]. Plant Cell Environ, 2013, 36(4):879-891. doi:10.1111/pce.12024.
    [9] AERTS R. The advantages of being evergreen[J]. Trends Ecol Evol, 1995, 10(10):402-407. doi:10.1016/S0169-5347(00)89156-9.
    [10] SOBRADO M A. Cost-benefit relationships in deciduous and ever-green leaves of tropical dry forest species[J]. Funct Ecol, 1991, 5(5):608-616. doi:10.2307/2389479.
    [11] WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827. doi:10. 1038/nature02403.
    [12] SHEN Z H. The leaf economic traits and element concentrations of mangrove plants in southern China[D]. Nanning:Guangxi University, 2016:3-4.申智骅. 华南红树植物叶片经济学及元素特征[D]. 南宁:广西大学, 2016:3-4.
    [13] LIU Y H, XIA N H, YANG H Q. The origin, evolution and phyto-geography of Magnoliaceae[J]. J Trop Subtrop Bot, 1995, 3(4):1-12. doi:10.3969/j.issn.1005-3395.1995.4.001.刘玉壶, 夏念和, 杨惠秋. 木兰科(Magnoliaceae)的起源、进化和地理分布[J]. 热带亚热带植物学报, 1995, 3(4):1-12. doi:10.3969/j. issn.1005-3395.1995.4.001.
    [14] LIU H, LUNDGREN M R, FRECKLETON R P, et al. Uncovering the spatio-temporal drivers of species trait variances:A case study of Magnoliaceae in China[J]. J Biogeogr, 2016, 43(6):1179-1191. doi:10.1111/jbi.12707.
    [15] NIE Z L, WEN J, AZUMA H, et al. Phylogenetic and biogeographic complexity of Magnoliaceae in the Northern Hemisphere inferred from three nuclear data sets[J]. Mol Phylogenet Evol, 2008, 48(3):1027-1040. doi:10.1016/j.ympev.2008.06.004.
    [16] XU Q Y, LIU H, YE Q. Intraspecific variability of ecophysiological traits of four Magnoliaceae species growing in two climatic regions in China[J]. Plant Ecol, 2017, 218(4):407-415. doi:10.1007/s11258-017-0699-9.
    [17] GOWER S T, KUCHARIK C J, NORMAN J M. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems[J]. Remote Sens Environ, 1999, 70(1):29-51. doi:10.1016/S0034-4257(99)00056-5.
    [18] YAN B G, LIU G C, FAN B, et al. Relationships between plant stoichiometry and biomass in an arid-hot valley, Southwest China[J]. Chin J Plant Ecol, 2015, 39(8):807-815. doi:10.17521/cjpe.2015.0077.闫帮国, 刘刚才, 樊博, 等. 干热河谷植物化学计量特征与生物量之间的关系[J]. 植物生态学报, 2015, 39(8):807-815. doi:10.17521/cjpe.2015.0077
    [19] TANG S B, ZHANG L L, KUANG Y W, et al. Leaf construction costs of 34 dominant species in karst forest, Guizhou[J]. Earth Environ, 2017, 45(1):18-24. doi:10.14050/j.cnki.1672-9250.2017.01.003.汤松波, 张玲玲, 旷远文, 等. 贵州喀斯特森林34个优势种叶片构建成本特征[J]. 地球与环境, 2017, 45(1):18-24. doi:10.14050/j.cnki. 1672-9250.2017.01.003.
    [20] NAGEL J M, GRIFFIN K L. Construction cost and invasive potential:Comparing Lythrum salicaria (Lythraceae) with co-occurring native species along pond banks[J]. Amer J Bot, 2001, 88(12):2252-2258. doi:10.2307/3558387.
    [21] ZHU S D, LI R H, SONG J, et al. Different leaf cost-benefit strategies of ferns distributed in contrasting light habitats of sub-tropical forests[J]. Ann Bot, 2016, 117(3):497-506. doi:10.1093/aob/mcv179.
    [22] LIU H, XU Q Y, HE P C, et al. Strong phylogenetic signals and phylogenetic niche conservatism in ecophysiological traits across divergent lineages of Magnoliaceae[J]. Sci Rep, 2015, 5:12246. doi:10.1038/srep12246.
    [23] VILLAR R, ROBLETO J R, de JONG Y, et al. Differences in construction costs and chemical composition between deciduous and evergreen woody species are small as compared to differences among families[J]. Plant Cell Environ, 2006, 29(8):1629-1643. doi:10.1111/j.1365-3040.2006.01540.x.
    [24] FENG Y L. Nitrogen allocation and partitioning in invasive and native Eupatorium species[J]. Physiol Plant, 2008, 132(3):350-358. doi:10.1111/j.1399-3054.2007.01019.x.
    [25] BUCCI S J, GOLDSTEIN G, MEINZER F C, et al. Functional conver-gence in hydraulic architecture and water relations of tropical savanna trees:From leaf to whole plant[J]. Tree Physiol, 2004, 24(8):891-899. doi:10.1093/treephys/24.8.891.
    [26] YAN E R, WANG X H, GUO M, et al. C:N:P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deci-duous broad-leaved forests in the Tiantong region, Zhejiang Province, eastern China[J]. Chin J Plant Ecol, 2010, 34(1):48-57. doi:10.3773/j. issn.1005-264x.2010.01.008.阎恩荣, 王希华, 郭明, 等. 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征[J]. 植物生态学报, 2010, 34(1):48-57. doi:10.3773/j.issn.1005-264x.2010.01.008.
    [27] QI J, MA K M, ZHANG Y X. Comparisons on leaf traits of Quercus liaotungensis Koidz. on different slope positions in Dongling Mountain of Beijing[J]. Acta Ecol Sin, 2008, 28(1):122-128. doi:10.3321/j.issn:1000-0933.2008.01.014.祁建, 马克明, 张育新. 北京东灵山不同坡位辽东栎(Quercus liaotungensis)叶属性的比较[J]. 生态学报, 2008, 28(1):122-128. doi:10.3321/j.issn:1000-0933.2008.01.014.
    [28] AERTS R, CHAPIN Ⅲ F S. The mineral nutrition of wild plants revisited:A re-evaluation of processes and patterns[J]. Adv Ecol Res, 2000, 30(8):1-67. doi:10.1016/S0065-2504(08)60016-1.
    [29] STERCK F J, POORTER L, SCHIEVING F. Leaf traits determine the growth-survival trade-off across rain forest tree species[J]. Amer Nat, 2006, 167(5):758-765.
    [30] HU Y S, YAO X Y, LIU Y H. Specific leaf area and its influencing factors of forests at different succession stages in Changbai Mountains[J]. Acta Ecol Sin, 2015, 35(5):1480-1487. doi:10.5846/stxb201310132459.胡耀升, 么旭阳, 刘艳红. 长白山森林不同演替阶段比叶面积及其影响因子[J]. 生态学报, 2015, 35(5):1480-1487. doi:10.5846/stxb 201310132459.
    [31] ONODA Y, WRIGHT I J, EVANS J R, et al. Physiological and structural tradeoffs underlying the leaf economics spectrum[J]. New Phytol, 2017, 214(4):1447-1463. doi:10.1111/nph.14496.
    [32] REICH P B. The world-wide ‘fast-slow’ plant economics spectrum:A traits manifesto[J]. J Ecol, 2014, 102(2):275-301. doi:10.1111/1365-2745.12211.
    [33] LIU H, ZHU L W, XU Q Y, et al. Ecophysiological responses of two closely related Magnoliaceae genera to seasonal changes in subtropical China[J]. J Plant Ecol, 2018, 11(3):434-444. doi:10.1093/jpe/rtx011.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

侯皓,刘慧,贺鹏程,华雷,许秋园,叶清.木兰科常绿与落叶物种叶片构建策略的差异[J].热带亚热带植物学报,2019,27(3):272~278

Copy
Share
Article Metrics
  • Abstract:894
  • PDF: 1160
  • HTML: 451
  • Cited by: 0
History
  • Received:August 13,2018
  • Online: May 28,2019
Article QR Code