Prediction of Potential Distribution Area of Praxelis clematidea Based on Maxent Model
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [44]
  • |
  • Related [20]
  • |
  • Cited by [0]
  • | |
  • Comments
    Abstract:

    In order to prevent and remove effectively invasive plant Praxelis clematidea, the potential distribution area and dominant environment variables were predicted by using the maximum entropy model (Maxent) and the Geographic Information System (GIS) technology. The accuracy of prediction was evaluated at "excellent" level by AUC (area under curve) method. The results showed that the prediction of Maxent model had high reliability. The potential suitable growth area of P. clematidea in China was 785 985 km2, accounting for 8.19% of all China land area. This species mainly distributed in southern and southeastern China, especially in Fujian, Guangdong, Hainan and Guangxi (high suitable areas). The distribution of P. clematidea in Fujian Province was the widest, which 61.98% of the area was suitable for growth. It was high suitable area of P. clematidea in coast of south Fujian, but the population density in the north of Fujian was low relatively. The minimum temperature in February might be the restrictive variable of the distribution of P. clematidea with the contribution rate of 61.7%. Precipitation of the driest quarter and maximum temperature in September have a certain influence on its distribution. These provided a theoretical basis for the prevention and control of P. clematidea and some effective measures must be taken to prevent its spread for the further.

    Reference
    [1] WANG Z H, CHEN Q B, GUO Z L, et al. Detection and PCR-RFLP analysis of 16S ribosomal DNA of phytoplasma associated with witches' broom of Praxelis clematidea[J]. Chin J Trop Crops, 2007, 28(4):51-66. doi:10.3969/j.issn.1000-2561.2007.04.011.王真辉, 陈秋波, 郭志立, 等. 假臭草丛枝病植原体16S rDNA检测与PCR-RFLP分析[J]. 热带作物学报, 2007, 28(4):51-56. doi:10. 3969/j.issn.1000-2561.2007.04.011.
    [2] ABBOTT J R, WHITE C L, DAVIS S B. Praxelis clematidea (Asteraceae), a genus and species new for the Flora of North America[J]. J Bot Res Inst Texas, 2008, 2(1):621-626.
    [3] WU H R, HU X N, ZHONG G Q, et al. Characteristics of an alien weed:Eupatorium catarium Veldkamp[J]. Weed Sci, 2008(3):69-71. doi:10.3969/j.issn.1003-935X.2008.03.023.吴海荣, 胡学难, 钟国强, 等. 外来杂草假臭草的特征特性[J]. 杂草科学, 2008(3):69-71. doi:10.3969/j.issn.1003-935X.2008.03.023.
    [4] CORLETT R T, SHAW J C. Praxelis clematidea:Yesterday South America, today Hong Kong, tomorrow the world?[J]. Mem Hong Kong Nat Hist Soc, 1995, 20(1):235-236.
    [5] LIU J F, LIU Q, LI C L, et al. Distribution of invasive plants Eupato-rium catarium along different levels of the highways in Haikou city[J]. Guangdong Agric Sci, 2011, 38(23):1-5. doi:10.3969/j.issn.1004-874X.2011.23.001.刘吉峰, 刘强, 李朝林, 等. 外来入侵植物假臭草在海口各级公路分布的初步研究[J]. 广东农业科学, 2011, 38(23):1-5. doi:10. 3969/j.issn.1004-874X.2011.23.001.
    [6] LIU G. The third list of invasive species from China has been officially announced[J]. Pestic Mark New, 2014(25):44.刘刚. 第三批中国外来入侵物种名单正式公布[J]. 农药市场信息, 2014(25):44.
    [7] MAO R Q, YANG W C, HAN S C, et al. A new invasive exotic weed of citrus orchard:Eupatorium catarium[J]. S China Fruits, 2008, 37(5):27-29. doi:10.13938/j.issn.1007-1431.2008.05.001.毛润乾, 杨伟成, 韩诗畴, 等. 柑桔园新入侵性杂草——假臭草[J]. 中国南方果树, 2008, 37(5):27-29. doi:10.13938/j.issn.1007-1431. 2008.05.001.
    [8] QIU C H, WANG Q Z, YU Y. Predicted potential distribution of Praxelis clematidea in China[J]. Chin J Appl Environ Biol, 2011, 17(6):774-781. doi:10.3724/SP.J.1145.2011.00774.邱宠华, 王奇志, 余岩. 外来入侵假臭草在中国分布区的预测[J]. 应用与环境生物学报, 2011, 17(6):774-781. doi:10.3724/SP.J.1145.2011.00774.
    [9] PHILLIPS S J, DUDÍK M, SCHAPIRE R E. Maxent software for modeling species niches and distributions (Version 3.4.1)[EB/OL].[2018-02-05] http://biodiversityinformatics.amnh.org/open_source/maxent.
    [10] WANG Y S, XIE B Y, WAN F H, et al. Application of ROC curve analysis in evaluating the performance of alien species' potential distribution models[J]. Biodiv Sci, 2007, 15(4):365-372. doi:10. 3321/j.issn:1005-0094.2007.04.005.王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4):365-372. doi:10. 3321/j.issn:1005-0094.2007.04.005.
    [11] ZHANG H J, CHEN Y, HUANG L J, et al. Predicting potential geographic distribution of Mikania micrantha planting based on ecological niche models in China[J]. Trans Chin Soc Agric Eng, 2011, 27(S1):413-418.张海娟, 陈勇, 黄烈健, 等. 基于生态位模型的薇甘菊在中国适生区的预测[J]. 农业工程学报, 2011, 27(S1):413-418.
    [12] PADALIA H, SRIVASTAVA V, KUSHWAHA S P S. Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India:comparison of Maxent and GARP[J]. Ecol inform, 2014, 22:36-43. doi:10.1016/j.ecoinf.2014.04.002.
    [13] Ministry of Agriculture of the People's Republic of China. NY/T 1861-2010 Codes of practice for general surveys of herbaceous alien plants[S]. Beijing:China Agriculture Press, 2010.中华人民共和国农业部. NY/T 1861-2010外来草本植物普查技术规程[S]. 北京:中国农业出版社, 2010.
    [14] SUN X W. Characteristics of regional economic growth in China and regional comparisons based on spatial econometric perspective[D]. Nanchang:Nanchang University, 2012:10-13.孙向伟. 基于空间计量经济视角的中国区域经济增长特征与地区比较[D]. 南昌:南昌大学, 2012:10-13.
    [15] HIJMANS R J, CAMERON S E, PARRA J L, et al. Very high resolution interpolated climate surfaces for global land areas[J]. Int J Climatol, 2005, 25(15):1965-1978. doi:10.1002/joc.1276.
    [16] LUO K H, FU X Y, ZHOU X. Prediction of the potential geographic distribution of Taiwania flousiana in Yunnan based on Maxent and GIS[J]. For Invent Plan, 2017, 42(4):7-10,16. doi:10.3969/j.issn.1671-3168.2017.04.002.罗开华, 付小勇, 周晓. 基于Maxent和GIS的云南秃杉潜在分布区预测[J]. 林业调查规划, 2017, 42(4):7-10,16. doi:10.3969/j.issn. 1671-3168.2017.04.002.
    [17] WANG R L, LI Q, FENG C H, et al. Predicting potential ecological distribution of Locusta migratoria tibetensis in China using Maxent ecological niche modeling[J]. Acta Ecol Sin, 2017, 37(24):8556-8566. doi:10.5846/stxb201611152326.王茹琳, 李庆, 封传红, 等. 基于MaxEnt的西藏飞蝗在中国的适生区预测[J]. 生态学报, 2017, 37(24):8556-8566. doi:10.5846/stxb 201611152326.
    [18] GAO W Q, WANG X F, JIANG Z P, et al. Impact of climate change on the potential geographical distribution pattern and dominant climatic factors of Quercus variabilis[J]. Acta Ecol Sin, 2016, 36(14):4475-4484. doi:10.5846/stxb201412012387.高文强, 王小菲, 江泽平, 等. 气候变化下栓皮栎潜在地理分布格局及其主导气候因子[J]. 生态学报, 2016, 36(14):4475-4484. doi:10.5846/stxb201412012387.
    [19] LIU J H, XIONG X Z, PAN Y Z, et al. Prediction of potential geographical distribution of seed chalcids, Megastigmus duclouxiana Roques & Pan[J]. Chin Agric Sci Bull, 2011, 27(10):39-43.刘建宏, 熊小真, 潘涌智, 等. 滇柏大痣小蜂Megastigmus duclou-xiana Roques & Pan的潜在分布区预测[J]. 中国农学通报, 2011, 27(10):39-43.
    [20] LI L H, LIU H Y, LIN Z S, et al. Identifying priority areas for monitoring the invasion of Solidago canadensis based on Maxent and Zonation[J]. Acta Ecol Sin, 2017, 37(9):3124-3132. doi:10.5846/stxb 201601260182.李丽鹤, 刘会玉, 林振山, 等. 基于Maxent和Zonation的加拿大一枝黄花入侵重点监控区确定[J]. 生态学报, 2017, 37(9):3124-3132. doi:10.5846/stxb201601260182.
    [21] WEN J, LÜ X M, HONG D X, et al. Potential distribution of Rhodiola crenulata in Tibetan Plateau based on Maxent model[J]. China J Chin Mat Med, 2016, 41(21):3931-3936.文检, 吕秀梅, 洪道鑫, 等. 基于Maxent模型的青藏高原大花红景天生态适宜性分析[J]. 中国中药杂志, 2016, 41(21):3931-3936.
    [22] GUO J, LIU X P, ZHANG Q, et al. Prediction for the potential distribution area of Codonopsis pilosula at global scale based on Maxent model[J]. Chin J Appl Ecol, 2017, 28(3):992-1000. doi:10. 13287/j.1001-9332.201703.026.郭杰, 刘小平, 张琴, 等. 基于Maxent模型的党参全球潜在分布区预测[J]. 应用生态学报, 2017, 28(3):992-1000. doi:10.13287/j. 1001-9332.201703.026.
    [23] YANG X Q, KUSHWAHA S P S, SARAN S, et al. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecol Eng, 2013, 51:83-87. doi:10.1016/j.ecoleng.2012.12.004.
    [24] LIU X Y, LI J S, ZHAO C Y, et al. Prediction of potential suitable area of Ambrosia artemisiifolia L. in China based on Maxent and ArcGIS[J]. J Plant Prot, 2016, 43(6):1041-1048. doi:10.13802/j.cnki.zwbhxb. 2016.06.023.柳晓燕, 李俊生, 赵彩云, 等. 基于Maxent模型和ArcGIS预测豚草在中国的潜在适生区[J]. 植物保护学报, 2016, 43(6):1041-1048. doi:10.13802/j.cnki.zwbhxb.2016.06.023.
    [25] WANG R, WAN F H. Prediction of the potential survival area of Xanthium italicum in China[J]. Acta Pratacult Sin, 2010, 19(6):222-230.王瑞, 万方浩. 外来入侵植物意大利苍耳在我国适生区预测[J]. 草业学报, 2010, 19(6):222-230.
    [26] TAN Y F, ZUO X Q. Studies on potential suitable growth areas and protection of Camellia nitidissima based on GIS and Maxent model[J]. J Trop Subtrop Bot, 2018, 26(1):24-32. doi:10.11926/jtsb.3796.谭钰凡, 左小清. 基于GIS与Maxent模型的金花茶潜在适生区与保护研究[J]. 热带亚热带植物学报, 2018, 26(1):24-32. doi:10. 11926/jtsb.3796.
    [27] ZHANG Q, ZHANG D F, WU M L, et al. Predicting the global areas for potential distribution of Gastrodia elata based on ecological niche models[J]. Chin J Plant Ecol, 2017, 41(7):770-778. doi:10.17521/cjpe.2016.0380.张琴, 张东方, 吴明丽, 等. 基于生态位模型预测天麻全球潜在适生区[J]. 植物生态学报, 2017, 41(7):770-778. doi:10.17521/cjpe. 2016.0380.
    [28] XI C, MU L, LI S, et al. MaxEnt modeling and ArcGIS for predicting the potential distribution of Pistia stratiotes L. in Yunnan Province[J]. J Yunnan Agric Univ (Nat Sci), 2018, 33(1):7-16.喜超, 木霖, 李胜, 等. 基于MaxEnt和ArcGIS预测大薸在云南的潜在适生区[J]. 云南农业大学学报(自然科学版), 2018, 33(1):7-16.
    [29] WANG Y L, LI H, YANG X, et al. Prediction of geographical distribution of Vitex trifolia var. simplicifolia under climate change based on the Maxent model[J]. Acta Pratacult Sin, 2017, 26(7):1-10.王亚领, 李浩, 杨旋, 等. 基于Maxent模型和不同气候变化情景的单叶蔓荆潜在地理分布预测[J]. 草业学报, 2017, 26(7):1-10.
    [30] SWETS J A. Measuring the accuracy of diagnostic systems[J]. Science, 1988, 240(4857):1285-1293. doi:10.1126/science.3287615.
    [31] GONG Y Y, JIA X X, ZHU Q Q, et al. Potential distribution of Ipomoea cairica in China under climate change[J]. J NW Agric For Univ (Nat Sci), 2018, 46(6):115-123. doi:10.13207/j.cnki.jnwafu.2018.06.015.龚岩岩, 贾晓霞, 朱倩倩, 等. 气候变化背景下五爪金龙在中国的潜在适生区预测[J]. 西北农林科技大学学报(自然科学版), 2018, 46(6):115-123. doi:10.13207/j.cnki.jnwafu.2018.06.015.
    [32] VANAGAS G. Receiver operating characteristic curves and comparison of cardiac surgery risk stratification systems[J]. Interact Cardiovasc Thorac Surg, 2004, 3(2):319-322. doi:10.1016/j.icvts.2004.01.008.
    [33] ELITH J, PHILLIPS S J, HASTIE T, et al. A statistical explanation of Maxent for ecologists[J]. Divers Distrib, 2011, 17(1):43-57. doi:10. 1111/j.1472-4642.2010.00725.x.
    [34] SONG H L. Evaluation study and application of ROC curve[D]. Shanghai:The Second Military Medical University, 2006:14-20.宋花玲. ROC曲线的评价研究及应用[D]. 上海:第二军医大学, 2006:14-20.
    [35] SUTHERST R W. Climate change and invasive species:A conceptual framework[M]//MOONEY H A, HOBBS R J. Invasive Species in a Changing World. Washington, DC:Island Press, 2000:211-240.
    [36] DU Y D, DUAN S P, CHEN X G, et al. Effects of low temperature stress on germination of tomato seeds[J]. Chin J Ecol, 2010, 29(6):1109-1113.杜尧东, 段世萍, 陈新光, 等. 低温胁迫对番茄种子萌发的影响[J]. 生态学杂志, 2010, 29(6):1109-1113.
    [37] YANG Z Q, ZHANG B, ZHANG J B, et al. Effects of low temperature stresses on photosynthetic characteristics and activity of antioxidant enzymes of tomatoes[J]. J Nat Disasters, 2012, 21(4):168-174. doi:10.13577/j.jnd.2012.0424.杨再强, 张波, 张继波, 等. 低温胁迫对番茄光合特性及抗氧化酶活性的影响[J]. 自然灾害学报, 2012, 21(4):168-174. doi:10. 13577/j.jnd.2012.0424.
    [38] KAN L Y, XIE G S, AN F, et al. Seeds germination of invasive plant Eupatorium catarium and its prevention countermeasures in Hainan Province[J]. Guangxi Agric Sci, 2008, 39(1):46-50. doi:10.3969/j. issn.2095-1191.2008.01.012.阚丽艳, 谢贵水, 安锋, 等. 海南省入侵植物假臭草种子萌芽分析及其防治对策[J]. 广西农业科学, 2008, 39(1):46-50. doi:10.3969/j.issn.2095-1191.2008.01.012.
    [39] CHEN W. The biological zero and accumulated temperature for seed germination of six Asteraceae species in eastern Guangdong[J]. J NW Norm Univ (Nat Sci), 2016, 52(4):93-98. doi:10.16783/j.cnki.nwnuz. 2016.04.020.陈文. 粤东6种菊科植物种子萌发的生物学零度和积温[J]. 西北师范大学学报(自然科学版), 2016, 52(4):93-98. doi:10.16783/j.cnki. nwnuz.2016.04.020.
    [40] LI X N. High temperature on the photosynthetic ecophysiological characteristics of four alien invasive plants in south China[D]. Guang-zhou:Guangzhou University, 2017. 李晓娜. 高温对华南4种入侵植物光合生理的影响[D]. 广州:广州大学, 2017.
    [41] KAN L Y, XIE G S, AN F, et al. Analyses of the germination in the invasive plant Eupatorium catarium seeds in Hainan Province[J]. Chin Agric Sci Bull, 2008, 24(2):425-432.阚丽艳, 谢贵水, 安锋, 等. 海南省入侵植物假臭草种子萌芽分析[J]. 中国农学通报, 2008, 24(2):425-432.
    [42] KAN L Y, XIE G S, WANG J K. Effect of drought stress on the growth and eco-physiologic characteristics of invasive plant Eupatorium catarium seedlings[J]. Chin J Trop Crops, 2009, 30(5):608-612. doi:10. 3969/j.issn.1000-2561.2009.05.010.阚丽艳, 谢贵水, 王纪坤. 干旱胁迫对入侵植物假臭草幼苗生长和生理生态指标的影响[J]. 热带作物学报, 2009, 30(5):608-612. doi:10.3969/j.issn.1000-2561.2009.05.010.
    [43] CAI J Y, ZHANG M M, SU H J, et al. Application of ecological niche models for selection of species habitat[J]. J Econ Anim, 2014, 18(1):47-52,58. doi:10.13326/j.jea.2014.0012.蔡静芸, 张明明, 粟海军, 等. 生态位模型在物种生境选择中的应用研究[J]. 经济动物学报, 2014, 18(1):47-52,58. doi:10.13326/j. jea.2014.0012.
    [44] QIAO H J, HU J H, HUANG J H. Theoretical basis, future directions, and challenges for ecological niche models[J]. Sci Sin Vitae, 2013, 43(11):915-927. doi:10.1360/052013-192.乔慧捷, 胡军华, 黄继红. 生态位模型的理论基础、发展方向与挑战[J]. 中国科学:生命科学, 2013, 43(11):915-927. doi:10.1360/052013-192.
    Comments
    Comments
    分享到微博
    Submit
Get Citation

郭燕青,史梦竹,李建宇,傅建炜,吴梅香.基于Maxent模型的假臭草潜在分布区预测[J].热带亚热带植物学报,2019,27(3):250~260

Copy
Share
Article Metrics
  • Abstract:988
  • PDF: 997
  • HTML: 437
  • Cited by: 0
History
  • Received:August 13,2018
  • Online: May 28,2019
Article QR Code