Adaptive Evolutionary Analysis of the rbcL Gene from Compsopogon (Rhodophyta)
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [35]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    In order to reveal the chloroplast gene and adaptive evolution characters of Rhodophyta, the 17 rbcL genes of Compsopogon and the similar group of freshwater red algae were selected, the bioinformatics of proteins encoded by rbcL genes of Compsopogon were analyzed by using software PAML4.9, and the selection sites of genes were detected by using branch model, site model and branch-site models. The results showed that the secondary structure of protein encoded by rbcL of Compsopogon was mainly composed of α helix and β folding, so its structure was very stable. The phylogenetic tree with the maximum likelihood method showed that the inner group had only one species, could be divided into three small branches, and they had obvious geographical distribution. No significant positively selected sites were detected under all three evolutionary models, indicating that most of the sites were under negative selection pressure. Therefore, there is no adaptive evolution of rbcL gene in Compsopogon.

    Reference
    [1] SKUJA H. Comments on fresh-water rhodophyceae[J]. Bot Rev, 1938, 4(12):665-676. doi:10.1007/BF02869845.
    [2] KUMANO S. Freshwater red Algae of the World[M]. Bristol, England:Biopress Limited, 2002:223-228.
    [3] SHI Z X. Flora Slgarum Sinicarum Aquae Dulcis, Vol. 13, Rhodophyta Phaeophyta[M]. Beijing:Science Press, 2006:1-34. 施之新. 中国淡水藻志, 第13卷, 红藻门, 褐藻门[M]. 北京:科学出版社, 2006:1-34.
    [4] GAO Y F, NAN F R, FENG J, et al. Review of systematics of Compsopogonales (Rhodophyta)[J]. World Sci-Technol Res Devel, 2015, 37(3):314-318. doi:10.16507/j.issn.1006-6055.2015.03.021. 高一帆, 南芳茹, 冯佳, 等. 弯枝藻目Compsopogonales系统分类研究进展[J]. 世界科技研究与发展, 2015, 37(3):314-318. doi:10. 16507/j.issn.1006-6055.2015.03.021.
    [5] NECCHI O Jr, FO A S G, SALOMAKI E D, et al. Global sampling reveals low genetic diversity within Compsopogon (Compsopogonales, Rhodophyta)[J]. Eur J Phycol, 2013, 48(2):152-162. doi:10.1080/09670262.2013.783626.
    [6] KAPRALOV M V, FILATOV D A. Widespread positive selection in the photosynthetic Rubisco enzyme[J]. BMC Evol Biol, 2007, 7:73. doi:10.1186/1471-2148-7-73.
    [7] SAGE R F, SEEMANN J R. Regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase activity in response to reduced light intensity in C4 plants[J]. Plant Physiol, 1993, 102(1):21-28. doi:10.1104/pp.102. 1.21.
    [8] SIQUEIRA A S, LIMA A R J, DALL'AGNOL L T, et al. Comparative modeling and molecular dynamics suggest high carboxylase activity of the Cyanobium sp. CACIAM14 rbcL protein[J]. J Mol Model, 2016, 22:68. doi:10.1007/s00894-016-2943-y.
    [9] HARTMAN F C, HARPEL M R. Structure, function, regulation, and assembly of D-ribulose-1,5-bisphosphate carboxylase/oxygenase[J]. Annu Rev Biochem, 1994, 63:197-234. doi:10.1146/annurev.bi.63. 070194.001213.
    [10] GONG C Y, NAN F R, FENG J, et al. Adaptive evolutionary analysis on rbcL gene of Batrachospermales[J]. Oceanol Limnol Sin, 2017, 48(3):527-535. doi:10.11693/hyhz20161200277. 巩超彦, 南芳茹, 冯佳, 等. 串珠藻目植物rbcL基因的适应性进化分析[J]. 海洋与湖沼, 2017, 48(3):527-535. doi:10.11693/hyhz20161200277.
    [11] NEI M, KUMAR S. Molecular Evolution and Phylogenetics[M]. New York:Oxford University Press, 2000:238-273.
    [12] ZHOU Y, WANG B, GAO L, et al. Adaptive evolution and coevolution of the rbcL gene in xeric Pteridaceae ferns[J]. Plant Sci J, 2011, 29(4):409-416. doi:10.3724/SP.J.1142.2011.40409. 周媛, 王博, 高磊, 等. 凤尾蕨科旱生蕨类rbcL基因的适应性进化和共进化分析[J]. 植物科学学报, 2011, 29(4):409-416. doi:10. 3724/SP.J.1142.2011.40409.
    [13] ZHANG L J, CHEN J, WANG T. Adaptive evolution in the chloroplast gene rps4 in ferns[J]. Bull Bot Res, 2010, 30(1):42-50. 张丽君, 陈洁, 王艇. 蕨类植物叶绿体rps4基因的适应性进化分析[J]. 植物研究, 2010, 30(1):42-50.
    [14] XIONG Y, ZHAO C Y, YANG Q S, et al. In silico cloning, bioinfor-matics and adaptive evolution analysis of rbcL gene in Artemisia annua[J]. Biotechnology, 2014, 24(6):50-56. doi:10.3969/j.issn. 1004-311X.2014.06.0137-7. 熊勇, 赵春艳, 杨青松, 等. 黄花蒿rbcL基因电子克隆、生物信息学及适应性进化分析[J]. 生物技术, 2014, 24(6):50-56. doi:10. 3969/j.issn.1004-311X.2014.06.0137-7.
    [15] LIU N, WANG Q B, CHEN J, et al. Adaptive evolution and structure modeling of rbcL gene in Ephedra[J]. Chin Sci Bull, 2010, 55(22):2341-2346. doi:10.1007/s11434-010-3023-9. 刘念, 王庆彪, 陈婕, 等. 麻黄属rbcL基因的适应性进化检测与结构模建[J]. 科学通报, 2010, 55(14):1341-1346. doi:10.1007/s 11434-010-3023-9.
    [16] JIANG B, GAO L, LI J, et al. Adaptive evolution of the chloroplast genome in AA-genome Oryza species[J]. Chin Sci Bull, 2014, 59(20):1975-1983. doi:10.1360/N972014-00127. 姜斌, 高磊, 李佳, 等. 稻属AA型物种叶绿体基因组的适应性进化[J]. 科学通报, 2014, 59(20):1975-1983. doi:10.1360/N972014-00127.
    [17] THOMPSON J D, GIBSON T J, PLEWNIAK F, et al. The CLUSTAL_X windows interface:Flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucl Acids Res, 1997, 25(24):4876-4882. doi:10.1093/nar/25.24.4876.
    [18] KUMAR S, STECHER G, TAMURA K. MEGA7:Molecular evolu-tionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7):1870-1874. doi:10.1093/molbev/msw054.
    [19] POSADA D, CRANDALL K A. MODELTEST:Testing the model of DNA substitution[J]. Bioinformatics, 1998, 14(9):817-818. doi:10. 1093/bioinformatics/14.9.817.
    [20] GUINDON S, DUFAYARD J F, LEFORT V, et al. New algorithms and methods to estimate maximum-likelihood phylogenies:Assessing the performance of PhyML 3.0[J]. Syst Biol, 2010, 59(3):307-321. doi:10.1093/sysbio/syq010.
    [21] RANNALA B, YANG Z. Probability distribution of molecular evolu-tionary trees:A new method of phylogenetic inference[J]. J Mol Evol, 1996, 43(3):304-311. doi:10.1007/BF02338839.
    [22] BURLAND T G. DNASTAR's Lasergene sequence analysis software[M]//MISENER S, KRAWETZ S A. Bioinformatics Methods and Protocols:Methods in Molecular BiologyTM, Vol. 132. Totowa, NJ:Humana Press, 2000:71-91. doi:10.1385/1-59259-192-2:71.
    [23] XIONG Y, ZHAO C Y, YANG Q S, et al. Molecular cloning, bioinfor-matics analysis of rbcL gene in Bellis perennis[J]. N Hort, 2015, 39(4):89-95. doi:10.11937/bfyy.201504021. 熊勇, 赵春艳, 杨青松, 等. 雏菊rbcL基因的克隆及其生物信息学分析[J]. 北方园艺, 2015, 39(4):89-95. doi:10.11937/bfyy.201504021.
    [24] YANG Z. Computational Molecular Evolution[M]. Oxford:Oxford University Press, 2006: 56–167.
    [25] YANG Z H, SWANSON W J, VACQUIER V D. Maximum-likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites [J]. Mol Biol Evol, 2000, 17(10): 1446–1455. doi: 10.1093/oxfordjournals.molbev. a026245.
    [26] WONG W S, YANG Z H, GOLDMAN N, et al. Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites [J]. Genetics, 2004, 168(2): 1041–1051. doi: 10.1534/genetics.104.031153.
    [27] YANG Z. PAML:A program package for phylogenetic analysis by maximum likelihood[J]. Comput Appl Biosci, 1997, 13(5):555-556.
    [28] YANG Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution[J]. Mol Biol Evol, 1998, 15(5):568-573. doi:10.1093/oxfordjournals.molbev.a025957.
    [29] YANG Z H, BIELAWSKI J P. Statistical methods for detecting mole-cular adaptation[J]. Trends Ecol Evol, 2000, 15(12):496-503. doi:10. 1016/S0169-5347(00)01994-7.
    [30] ZHANG J Z, NIELSEN R, YANG Z H. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level[J]. Mol Biol Evol, 2005, 22(12):2472-2479. doi:10. 1093/molbev/msi237.
    [31] LI Q, JI L, XIE S L. Phylogenetic analysis of Batrachospemales (Florideophyceae, Rhodophyta) based on chloroplast rbcL sequences[J]. Acta Hydrobiol Sin, 2010, 34(1):20-28. doi:10.3724/SP.J.1035. 2010.00020. 李强, 吉莉, 谢树莲. 串珠藻目植物的系统发育:基于rbcL序列的证据[J]. 水生生物学报, 2010, 34(1):20-28. doi:10.3724/SP.J.1035. 2010.00020.
    [32] KNIGHT S, ANDERSSON I, BR?NDéN C I. Crystallographic analysis of ribulose 1,5-bisphosphate carboxylase from spinach at 2·4Å resolution:Subunit interactions and active site[J]. J Mol Biol, 1990, 215(1):113-160. doi:10.1016/S0022-2836(05)80100-7.
    [33] SUZUKI Y, NEI M. Reliabilities of parsimony-based and likelihood-based methods for detecting positive selection at single amino acid sites[J]. Mol Biol Evol, 2001, 18(12): 2179–2185. doi: 10.1093/ oxfordjournals.molbev.a003764.
    [34] SUZUKI Y, NEI M. Simulation study of the reliability and robustness of the statistical methods for detecting positive selection at single amino acid sites [J]. Mol Biol Evol, 2002, 19(11): 1865–1869. doi: 10. 1093/oxfordjournals.molbev.a004010.
    [35] ZHANG J. Frequent false detection of positive selection by the likelihood method with branch-site models [J]. Mol Biol Evol, 2004, 21(7): 1332–1339. doi: 10.1093/molbev/msh117.
    Cited by
Get Citation

韩雨昕,南芳茹,巩超彦,冯佳,吕俊平,刘琪,谢树莲.弯枝藻属rbcL基因的适应性进化分析[J].热带亚热带植物学报,2019,27(1):36~44

Copy
Share
Article Metrics
  • Abstract:1042
  • PDF: 738
  • HTML: 373
  • Cited by: 0
History
  • Received:March 19,2018
  • Revised:April 29,2018
  • Online: January 19,2019
Article QR Code