Effect of Climate Change in Future on Geographical Distribution of Widespread Quercus acutissima and Analysis of Dominant Climatic Factors
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [35]
  • |
  • Related [20]
  • |
  • Cited by [0]
  • | |
  • Comments
    Abstract:

    To understand the potential distribution characteristics of Quercus acutissima and its response to future climatic change, the Maxent model was used to simulate potential distribution under present climatic condition, and predict changes in its distribution under different greenhouse gas emission scenarios in future, and major factors affecting its distribution were analyzed. The results showed that Maxent had relatively good predicting ability for the distribution of Q. acutissima with AUC value more than 0.95. Under the current climatic condition, Q. acutissima could be widely distributed in southern China and some provinces of northern China, such as Shannxi, Henan, Shanxi, Gansu, Beijing and Liaoning, as well as Japan, Korea peninsula, Laos, Vietnam, Myanmar, Nepal, Bhutan, India, Pakistan, with a total suitable area about 11.57×105km2. Under future climate scenarios of RCP2.6 and RCP8.5, the suitable area of Q. acutissima predicted by Maxent model will expand northward and southwestward, increasing ca. (2.49~3.02)×105km2;the loss of suitable area mainly occurred in southern Guangdong and Guangxi Provinces and eastern Myanmar. The dominant factors influencing the distribution of Q. acutissima were precipitation of the warmest quarter, isothermality, minimum temperature of the coldest month, mean temperature of the driest quarter, with contribution rates of 54.2%, 13.7%, 8.8%, 7.8%, respectively. These would provide a reference for studying the cultivation and conservation of Q. acutissima.

    Reference
    [1] HU X G, JIN Y, WANG X R, et al. Predicting impacts of future climate change on the distribution of the widespread conifer Platycladus orientalis[J]. PLoS One, 2015, 10(7):e0132326. doi:10.1371/journal. pone.0132326.
    [2] IPCC. Climate change 2013:The physical science basis[C]//STOCKER T F, QIN D, PLATTNER G K, et al. Contribution of Working Group I to the Fifth Assessment Report of the Intergovermental Panel on Climate Change. Cambridge, New York:Cambridge University Press, 2013.
    [3] BERTIN R I. Plant phenology and distribution in relation to recent climate change[J]. J Torrey Bot Soc, 2008, 135(1):126-146. doi:10. 3159/07-RP-035R.1.
    [4] BELLARD C, BERTELSMEIER C, LEADLEY P, et al. Impacts of climate change on the future of biodiversity[J]. Ecol Lett, 2012, 15(4):365-377. doi:10.1111/j.1461-0248.2011.01736.x.
    [5] GAO W Q, WANG X F, JIANG Z P, et al. Impact of climate change on the potential geographical distribution pattern and dominant climatic factors of Quercus variabilis[J]. Acta Ecol Sin, 2016, 36(14):4475-4484. doi:10.5846/stxb201412012387. 高文强, 王小菲, 江泽平, 等. 气候变化下栓皮栎潜在地理分布格局及其主导气候因子[J]. 生态学报, 2016, 36(14):4475-4484. doi:10.5846/stxb201412012387.
    [6] LI Y, ZHANG X W, FANG Y M. Responses of the distribution pattern of Quercus chenii to climate change following the last glacial maximum[J]. Chin J Plant Ecol, 2016, 40(11):1164-1178. doi:10.17521/cjpe. 2016.0032. 李垚, 张兴旺, 方炎明. 小叶栎分布格局对末次盛冰期以来气候变化的响应[J]. 植物生态学报, 2016, 40(11):1164-1178. doi:10. 17521/cjpe.2016.0032.
    [7] YING L X, LIU Y, CHEN S T, et al. Simulation of the potential range of Pistacia weinmannifolia in southwest China with climate change based on the maximum-entropy (Maxent) model[J]. Biodiv Sci, 2016, 24(4):453-461. doi:10.17520/biods.2015246. 应凌霄, 刘晔, 陈绍田, 等. 气候变化情景下基于最大熵模型的中国西南地区清香木潜在分布格局模拟[J]. 生物多样性, 2016, 24(4):453-461. doi:10.17520/biods.2015246.
    [8] CAO X F, QIAN G L, HU B S, et al. Prediction of potential suitable distribution area of Flaveria bidentis in China based on niche models[J]. Chin J Appl Ecol, 2010, 21(12):3063-3069. doi:10.13287/j. 1001-9332.2010.0431. 曹向锋, 钱国良, 胡白石, 等. 采用生态位模型预测黄顶菊在中国的潜在适生区[J]. 应用生态学报, 2010, 21(12):3063-3069. doi:10. 13287/j.1001-9332.2010.0431.
    [9] MA S M, ZHANG M L, ZHANG H X, et al. Predicting potential geographical distributions and patterns of the relic plant Gymnocarpos przewalskii using maximum entropy and genetic algorithm for rule-set prediction[J]. Chin J Plant Ecol, 2010, 34(11):1927-1335. doi:10. 3773/j.issn.1005-264x.2010.11.010. 马松梅, 张明理, 张宏祥, 等. 利用最大熵模型和规则集遗传算法模型预测孑遗植物裸果木的潜在地理分布及格局[J]. 植物生态学报, 2010, 34(11):1327-1335. doi:10.3773/j.issn.1005-264x.2010.11.010.
    [10] SHI W, TONG H. Prediction of potential distribution of Chinese fir in Guizhou next 70 years and ecological countermeasures[J]. J CS Univ For Technol, 2013, 33(9):87-92. doi:10.3969/j.issn.1673-923X.2013. 09.019. 石慰, 童红. 未来七十年贵州杉木林潜在适生区的变化及其生态对策[J]. 中南林业科技大学学报, 2013, 33(9):87-92. doi:10.3969/j. issn.1673-923X.2013.09.019.
    [11] YIN X J, ZHOU G S, SUI X H, et al. Dominant climatic factors of Quercus mongolica geographical distribution and their thresholds[J]. Acta Ecol Sin, 2013, 33(1):103-109. doi:10.5846/stxb201110111495. 殷晓洁, 周广胜, 隋兴华, 等. 蒙古栎地理分布的主导气候因子及其阈值[J]. 生态学报, 2013, 33(1):103-109. doi:10.5846/stxb201110111495.
    [12] STOCKWELL D R B, NOBLE I R. Induction of sets of rules from animal distribution data:A robust and informative method of data analysis[J]. Mathem Comput Simul, 1992, 33(5/6):385-390. doi:10. 1016/0378-4754(92)90126-2.
    [13] FISCHER J, LINDENMAYER D B, NIX H A, et al. Climate and animal distribution:A climatic analysis of the Australian marsupial Trichosurus caninus[J]. J Biogeogr, 2001, 28(3):293-304. doi:10. 1046/j.1365-2699.2001.00554.x.
    [14] PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecol Model, 2006, 190(3/4):231-259. doi:10.1016/j.ecolmodel.2005. 03.026.
    [15] DELLICOUR S, KASTALLY C, VARELA S, et al. Ecological niche modelling and coalescent simulations to explore the recent geogra-phical range history of five widespread bumblebee species in Europe[J]. J Biogeogr, 2017, 44(1):39-50. doi:10.1111/jbi.12748.
    [16] WAN J Z, WANG C J, TAN J F, et al. Climatic niche divergence and habitat suitability of eight alien invasive weeds in China under climate change[J]. Ecol Evol, 2017, 7(5):1541-1552. doi:10.1002/ece3.2684.
    [17] PHILLIPS S J, DUDÍK M. Modeling of species distributions with Maxent:New extensions and a comprehensive evaluation[J]. Ecography, 2008, 31(2):161-175. doi:10.1111/j.0906-7590.2008. 5203.x.
    [18] Delectis Florae Reipublicae Popularis Sinicae, Agendae Academiae Sinicae Edita. Flora of Republicae Popularis Sinicae, Tomus 22[M]. Beijing:Science Press, 1998:219-220. 中国科学院中国植物志编辑委员会. 中国植物志, 第22卷[M]. 北京:科学出版社, 1998:219-220.
    [19] LU Y, QIN D W, WEI Z M, et al. Evaluation of economic benefits of Quercus acutissima plantation[J]. J S Agric, 2014, 24(4):1242-1247. doi:10.3969/j:issn.2095-1191.2014.7.1242. 卢庸, 覃德文, 韦中绵, 等. 麻栎人工林经济效益分析[J]. 南方农业学报, 2014, 45(7):1242-1247. doi:10.3969/j:issn.2095-1191.2014. 7.1242.
    [20] HUANG Q F, CHEN L Y, HAO Y P, et al. Analysis of the stand spatial structure and species diversity of Quercus acutissima mixed forest[J]. Res Environ Yangtze Basin, 2010, 19(9):1010-1014. 黄庆丰, 陈龙勇, 郝焰平, 等. 麻栎混交林空间结构与物种多样性研究[J]. 长江流域资源与环境, 2010, 19(9):1010-1014.
    [21] TANG L Z, LIU Z L, YU M K, et al. Nutrient accumulation and allocation of aboveground parts in Quercus acutissima plantations under two site conditions in Anhui, China[J]. Chin J Plant Ecol, 2010, 34(6):661-670. doi:10.3773/j.issn.1005-264x.2010.06.005. 唐罗忠, 刘志龙, 虞木奎, 等. 两种立地条件下麻栎人工林地上部分养分的积累和分配[J]. 植物生态学报, 2010, 34(6):661-670. doi:10.3773/j.issn.1005-264x.2010.06.005.
    [22] XU F, GUO W H, XU W H, et al. Effects of short-term drought and rewatering on photosynthesis and chlorophyll fluorescence of Quercus acutissima seedlings[J]. Shandong For Sci Technol, 2008, 38(4):1-4, 40. doi:10.3969/j.issn.1002-2724.2008.04.001. 徐飞, 郭卫华, 徐伟红, 等. 短期干旱和复水对麻栎幼苗光合及叶绿素荧光的影响[J]. 山东林业科技, 2008, 38(4):1-4,40. doi:10. 3969/j.issn.1002-2724.2008.04.001.
    [23] ZHANG X W, LI Y, FANG Y M. Geographical distribution and prediction of potential ranges of Quercus acutissima in China[J]. Acta Bot Boreali-Occid Sin, 2014, 34(8):1685-1694. doi:10.7606/j.issn. 1000-4025.2014.08.1685. 张兴旺, 李垚, 方炎明. 麻栎在中国的地理分布及潜在分布区预测[J]. 西北植物学报, 2014, 34(8):1685-1692. doi:10.7606/j.issn.1000-4025.2014.08.1685.
    [24] LI Y C, LI Y Q, WANG L B, et al. Resource investigation and distribution pattern of Quercus variabilis Blume and Quercus acutissima Carr. as woody energy plant in China[J]. For Res Manag, 2013(2):94-101. doi:10.3969/j.issn.1002-6622.2013. 02.018. 李迎超, 厉月桥, 王利兵, 等. 木本淀粉能源植物栓皮栎与麻栎的资源调查以及分布规律[J]. 林业资源管理, 2013(2):94-101. doi:10.3969/j.issn.1002-6622.2013.02.018.
    [25] LI Y, ZHANG X W, FANG Y M. Predicting the impact of global warming on the geographical distribution pattern of Quercus variabilis in China[J]. Chin J Appl Ecol, 2014, 25(12):3381-3389. 李垚, 张兴旺, 方炎明. 气候变暖对中国栓皮栎地理分布格局影响的预测[J]. 应用生态学报, 2014, 25(12):3381-3389.
    [26] SHEN Y P, WANG G Y. Key findings and assessment results of IPCC WGI fifth assessment report[J]. J Glaciol Geocryol, 2013, 35(5):1068-1076. doi:10.7522/j.issn.1000-0240.2013.0120. 沈永平, 王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J]. 冰川冻土, 2013, 35(5):1068-1076. doi:10.7522/j.issn.1000-0240.2013.0120.
    [27] WANG Y S, XIE B Y, WAN F H, et al. Application of ROC curve analysis in evaluating the performance of alien species' potential distribution models[J]. Biodiv Sci, 2007, 15(4):365-372. doi:10. 3321/j.issn:1005-0094.2007.04.005. 王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4):365-372. doi:10.3321/j.issn:1005-0094.2007.04.005.
    [28] BROWN J L, ANDERSON B. SDMtoolbox:Apython-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses[J]. Meth Ecol Evol, 2014, 5(7):694-700. doi:10. 1111/2041-210X.12200.
    [29] ZHAO P, SUN G C, NI G Y, et al. Seasonal differences in the leaf hydraulic conductance of mature Acacia mangium in response to its leaf water use and photosynthesis[J]. Chin J Appl Ecol, 2013, 24(1):49-56. 赵平, 孙谷畴, 倪广艳, 等. 成熟马占相思水力导度对水分利用和光合响应的季节性差异[J]. 应用生态学报, 2013, 24(1):49-56.
    [30] CAVENDER-BARES J, HOLBROOK N M. Hydraulic properties and freezing-induced cavitation in sympatricevergreen and deciduous oaks with, contrasting habitats[J]. Plant Cell Environ, 2001, 24(12):1243-1256. doi:10.1046/j.1365-3040.2001.00797.x.
    [31] RIAHI K, RAO S, KREY V, et al. RCP 8.5:A scenario of compa-ratively high greenhouse gas emissions[J]. Clim Change, 2011, 109:33. doi:10.1007/s10584-011-0149-y.
    [32] HUANG X Y, WEN Z P, DU Y D. Scenario analyses on the changes of future surface air temperature and precipitation in south China[J]. J Trop Meteorol, 2008, 24(3):254-258. doi:10.3969/j.issn.1004-4965. 2008.03.007. 黄晓莹, 温之平, 杜尧东, 等. 华南地区未来地面温度和降水变化的情景分析[J]. 热带气象学报, 2008, 24(3):254-258. doi:10.3969/j.issn.1004-4965.2008.03.007.
    [33] CAVENDER-BARES J, GONZÁLEZ-RODRÍGUEZ A, EATON D A R, et al. Phylogeny and biogeography of the American live oaks (Quercus subsection Virentes):A genomic and population genetics approach[J]. Mol Ecol, 2015, 24(14):3668-3687. doi:10.1111/mec.13269.
    [34] JIN J X, JIANG H, PENG W, et al. Evaluating the impact of soil factors on the potential distribution of Phyllostachys edulis (bamboo) in China based on the species distribution model[J]. Chin J Plant Ecol, 2013, 37(7):631-640. doi:10.3724/SP.J.1258. 2013.00065. 金佳鑫, 江洪, 彭威, 等. 基于物种分布模型评价土壤因子对我国毛竹潜在分布的影响[J]. 植物生态学报, 2013, 37(7):631-640. doi:10.3724/SP.J.1258.2013.00065.
    [35] WEN J, SONG J Y, XIE C X, et al. Identification of potential distribution areas for energy plant Jatropha curcas L. using the Maxent entropy model[J]. Plant Sci J, 2016, 34(6):849-856. doi:10.11913/PSJ.2095-0837.2016.60849. 文检, 宋经元, 谢彩香, 等. 基于最大信息熵模型的能源物种麻疯树潜在适宜区[J]. 植物科学学报, 2016, 34(6):849-856. doi:10. 11913/PSJ.2095-0837.2016.60849.
    Comments
    Comments
    分享到微博
    Submit
Get Citation

关心怡,石慰,曹坤芳.未来气候变化对广布种麻栎地理分布的影响和主导气候因子分析[J].热带亚热带植物学报,2018,26(6):661~668

Copy
Share
Article Metrics
  • Abstract:1029
  • PDF: 829
  • HTML: 266
  • Cited by: 0
History
  • Received:February 28,2018
  • Revised:April 08,2018
  • Online: November 21,2018
Article QR Code