Hyperspectral Inversion of Leaf Area Index of Subtropical Vegetation in South China
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [27]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to determine the optimal hyperspectral characteristic variables of subtropical tree species and construct the estimation model of leaf area index (LAI), the leaf reflectance and LAI of 50 tree species in the campus of South China Agricultural University (SCAU) were measured. At the same time, the relationship model of LAI with the six hyperspectral characteristic variables, including NDVI, RVI, FREP, CIGreen, CIRed-edge and MSAVI2, were constructed through statistical analysis, respectively. The results showed that there were significant correlations between the six hyperspectral characteristic variables and LAI of tree species. The R2 of fitting equations between LAI with red edge position reflectivity (FREP) and the ratio vegetation index RVI were more than 0.8 with correlation coefficients for 0.820 and 0.811, respectively. The root mean square error (RMSE) of FREP estimation is only 0.13, so the regression model is the best model for estimating the LAI of typical subtropical tree species. Combining subtropical vegetation community structure and hyperspectral remote sensing, the regression model between red edge position reflectivity and leaf area index generally has a high fitting degree. Therefore, using hyperspectral characteristic variables inverted subtropical leaves of the leaf area index and other vegetation parameters had better application prospects.

    Reference
    [1] Xing Z R, Feng Y G, Li W M, et al.The research status of inversion of leaf area index with hyperspectral remote sensing[J].Sci Surv Map, 2010, 35(S1):162-164.doi:10.16251/j.cnki.1009-2307.2010.s1.088.邢著荣, 冯幼贵, 李万明, 等.高光谱遥感叶面积指数(LAI)反演研究现状[J].测绘科学, 2010, 35(S1):162-164,62.doi:10.16251/j.cnki.1009-2307.2010.s1.088.
    [2] Darvishzadeh R, Skidmore A, Schlerf M, et al.LAI and chlorophyll estimation for a heterogeneous grassland using hyper-spectral measurements[J].ISPRS J Photogramm Remote Sens, 2008, 63(4):409-426.doi:10.1016/j.isprsjprs.2008.01.001.
    [3] Fang X Q, Zhang W C.The application of remotely sensed data to the estimation of the leaf area index[J].Remote Sens Land Resour, 2003, 15(3):58-62.doi:10.6046/gtzyyg.2003.03.14.方秀琴, 张万昌.叶面积指数(LAI)的遥感定量方法综述[J].国土资源遥感, 2003, 15(3):58-62.doi:10.6046/gtzyyg.2003.03.14.
    [4] YANG F, SUN J L, FANG H L, et al.Comparison of different methods for corn LAI estimation over northeastern China[J].Int J Appl Earth Obs Geoinf, 2012, 18:462-471.doi:10.1016/j.jag.2011.09.004.
    [5] Dong J J, Niu Z.Inversion of leaf chlorophyll content and total nitrogen content using hyper-spectral reflectance[J].Remote Sens Inf, 2008(5):25-27.doi:10.3969/j.issn.1000-3177.2008.05.006.董晶晶, 牛铮.高光谱反演叶片叶绿素及全氮含量[J].遥感信息, 2008(5):25-27.doi:10.3969/j.issn.1000-3177.2008.05.006.
    [6] Pisek J, Chen J M.Comparison and validation of MODIS and VEGETATION global LAI products over four BigFoot sites in North America[J].Remote Sens Environ, 2007, 109(1):81-94.doi:10.1016/j.rse.2006.12.004.
    [7] Soudani K, François C, le Maire G, et al.Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands[J].Remote Sens Environ, 2006, 102(1/2):161-175.doi:10.1016/j.rse.2006.02.004.
    [8] Dash J, Curran P J.MTCI:the MERIS terrestrial chlorophyll index (MTCI)[J].Adv Space Res, 2007, 39(1):100-104.doi:10.1016/j.asr.2006.02.034.
    [9] Wang X Z, Huang J F, Li Y M, et al.The study on multi-spectral remote sensing estimation models about LAI of rice[J].Remote Sens Technol Appl, 2003, 18(2):57-65.doi:10.3969/j.issn.1004-0323.2003.02.001.王秀珍, 黄敬峰, 李云梅, 等.水稻叶面积指数的多光谱遥感估算模型研究[J].遥感技术与应用, 2003, 18(2):57-65.doi:10.3969/j.issn.1004-0323.2003.02.001.
    [10] Wu C Y, Niu Z, Tang Q, et al.Estimating chlorophyll content from hyperspectral vegetation indices:Modeling and validation[J].Agric For Meteorol, 2008, 148(8/9):1230-1241.doi:10.1016/j.agrformet.2008.03.005.
    [11] Liu Y Q, Sha J M, Yu T, et al.Comparing the performance of broad-band and narrow-band vegetation indices for estimation of grass LAI[J].Remote Sens Technol Appl, 2014, 29(4):587-593.doi:10.11873/j.issn.1004-0323.2014.4.0587.刘玉琴, 沙晋明, 余涛, 等.基于宽波段和窄波段植被指数的草地LAI反演对比研究[J].遥感技术与应用, 2014, 29(4):587-593.doi:10.11873/j.issn.1004-0323.2014.4.0587.
    [12] CHEN Y Z, LIN Q H, HUA Y G, et al.The analysis of hyperspectral characteristics of rubber leaves[J].J Trop Subtrop Bot, 2010, 18(3):293-297.doi:10.3969/j.issn.1005-3395.2010.03.014.陈贻钊, 林清火, 华元刚, 等.橡胶树叶片高光谱特征分析[J].热带亚热带植物学报, 2010, 18(3):293-297.doi:10.3969/j.issn.1005-3395.2010.03.014.
    [13] Le Y.Estimation of key vegetation parameters base on hyperspectral remote sensing data[D].Wuhan:Wuhan University, 2014:13乐源.基于光谱数据的植被重点参数反演方法研究[D].武汉:武汉大学, 2014:13.
    [14] Feret J, François C, Asner G P, et al.PROSPECT-4 and 5:Advances in the leaf optical properties model separating photosynthetic pigments[J].Remote Sens Environ, 2008, 112(6):3030-3043.doi:10.1016/j.rse.2008.02.012.
    [15] Zhang Y.Hyperspectral quantitative remote sensing inversion model and regieme of multiple pigments at leaf scale based on PROSPECT-PLUS model[D].Hangzhou:Zhejiang University, 2015.张垚.基于PROSPECT-PLUS模型植物叶片多种色素高光谱定量遥感反演模型与机理研究[D].杭州:浙江大学, 2015.
    [16] Thenkabail P S, Smith R B, de Pauw E.Hyperspectral vege-tation indices and their relationships with agricultural crop charac-teristics[J].Remote Sens Environ, 2000, 71(2):158-182.doi:10.1016/S0034-4257(99)00067-X.
    [17] Zhang X H, Chang Q R, Zhang M, et al.Hyperspectral vege-tation index monitoring of chlorophyll content of different corn growth stage in northwest China[J].J China Agric Univ, 2015, 20(4):75-81.doi:10.11841/j.issn.1007-4333.2015.04.10.张晓华, 常庆瑞, 章曼, 等.基于高光谱植被指数的西北玉米不同时期叶绿素含量估测[J].中国农业大学学报, 2015, 20(4):75-81.doi:10.11841/j.issn.1007-4333.2015.04.10.
    [18] Horler D N H, Dockray M, Barber J, et al.Red edge measu-rements for remotely sensing plant chlorophyll content[J].Adv Space Res, 1983, 3(2):273-277.doi:10.1016/0273-1177(83)90130-8.
    [19] Sampson P H, Zarco-Tejada P J, Mohammed G H, et al.Hyperspectral remote sensing of forest condition:Estimation of chloro-phyll content in tolerant hardwoods[J].For Sci, 2003, 49(3):381-391.
    [20] Du H Q, Ge H L, Fan W Y, et al.Study on relationships between total chlorophyll with hyperspectral features for leaves of Pinus masso-niana forest[J].Spectrosc Spect Anal, 2009, 29(11):3033-3037.doi:10.3964/j.issn.1000-0593(2009)11-3033-05.杜华强, 葛宏立, 范文义, 等.马尾松针叶光谱特征与其叶绿素含量间关系研究[J].光谱学与光谱分析, 2009, 29(11):3033-3037.doi:10.3964/j.issn.1000-0593(2009)11-3033-05.
    [21] Song X D, Jiang H, Yu S Q, et al.Relationship between chloro-phyll concentrations and spectral reflectance feature of the typical evergreen hardwood species in subtropical region of China[J].Acta Ecol Sin, 2008, 28(5):1959-1963.doi:10.3321/j.issn:1000-0933.2008.05.009.宋晓东, 江洪, 余树全, 等.亚热带典型常绿阔叶树种叶片叶绿素含量与其高光谱特征间的关系[J].生态学报, 2008, 28(5):1959-1963.doi:10.3321/j.issn:1000-0933.2008.05.009.
    [22] Gitelson A A, Viña A, Ciganda V, et al.Remote estimation of canopy chlorophyll content in crops[J].Geophys Res Lett, 2005, 32(8):L08403.doi:10.1029/2005GL022688.
    [23] Zhao J W, Wang K L, OuYANG Q, et al.Measurement of chloro-phyll content and distribution in tea plant's leaf using hyperspectral imaging technique[J].Spectrosc Spect Anal, 2011, 31(2):512-515.doi:10.3964/j.issn.1000-0593(2011)02-0512-04.赵杰文, 王开亮, 欧阳琴, 等.高光谱技术分析茶树叶片中叶绿素含量及分布[J].光谱学与光谱分析, 2011, 31(2):512-515.doi:10.3964/j.issn.1000-0593(2011)02-0512-04.
    [24] Xie Q y, Huang W j, Liang D, et al.Leaf area index estimation using vegetation indices derived from airborne hyperspectral images in winter wheat[J].IEEE J Sel Top Appl Earth Obs Remote Sens, 2014, 7(8):3586-3594.doi:10.1109/JSTARS.2014.2342291.
    [25] Li F X, Zhang B, Song K S, et al.Research and analysis of the correlation between hyperspectral vegetation index and leaf area index[J].Remote Sens Technol Appl, 2007, 22(5):586-592.doi:10.3969/j.issn.1004-0323.2007.05.002.李凤秀, 张柏, 宋开山, 等.玉米叶面积指数与高光谱植被指数关系研究[J].遥感技术与应用, 2007, 22(5):586-592.doi:10.3969/j.issn.1004-0323.2007.05.002.
    [26] Huang C Y, Liu S L, Wang D W, et al.Models for estimating soybean leaf area index using hyperspectral data[J].Soyb Sci, 2008, 27(2):228-232.doi:10.11861/j.issn.1000-9841.2008.02.0228.黄春燕, 刘胜利, 王登伟, 等.大豆叶面积指数的高光谱估算模型研究[J].大豆科学, 2008, 27(2):228-232.doi:10.11861/j.issn.1000-9841.2008.02.0228.
    [27] Zou H Y, Ding L X.Determination of the position of the red edge in accordance with the SPAD value[J].Remote Sens Inf, 2013, 28(4):3-7.doi:10.3969/j.issn.1000-3177.2013.04.001.邹红玉, 丁丽霞.基于SPAD值的植被"红边位置"确定方法探讨[J].遥感信息, 2013, 28(4):3-7.doi:10.3969/j.issn.1000-3177.2013.04.001.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

汪清泓,刘振华,胡月明,宋英强.华南地区亚热带树木叶面积指数的高光谱反演研究[J].热带亚热带植物学报,2018,26(4):323~334

Copy
Share
Article Metrics
  • Abstract:1065
  • PDF: 1262
  • HTML: 544
  • Cited by: 0
History
  • Received:October 19,2017
  • Revised:January 09,2018
  • Online: July 20,2018
Article QR Code