Effects of Temperature-irradiance Interactions and Three Nitrogen Sources on Growth of Cylindrospermopsis raciborskii
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [28]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to evaluate the effects of critical environmental factors on growth of Cylindrospermopsis raciborskii, the growth of two strains isolated from Zhenhai Reservoir in Guangdong Province was studied under combining temperature from 12℃ to 32℃ and irradiance (from 30 to 120 µmol m-2s-1) and three nitrogen sources (nitrate-N, ammonium-N and urea-N). The result showed that the growth of N1 and N8 strains of C. raciborskii increased with temperature under three light conditions and their growth rate was the biggest at 28℃ with high irradiance. Cylindrospermopsis raciborskii N1 strain was not able to grow at both 12℃ and 16℃, while N8 strain only could not be at 12℃. These suggested that the strain N8 had higher tolerance to low temperature than N1. The strains N1 and N8 grew well under nitrate-N (2-247 mg L-1), but only at a low level of ammonium-N and urea-N. Moreover, the growth of both strains completely inhibited under high ammonium-N and urea-N (128-247 mg L-1). The specific growth rates of N1 strain under three nitrogen sources were always higher than those of N8 strain, which indicated that the capability for strain N1 to utilize nitrogen was stronger than strain N8. In conclusion, Cylindrospermopsis raciborskii isolated from Guangdong Province has high strain diversity and adapt to high temperatures and a wide range of light intensities, and is able to use multisource of nitrogen. This may be the reason for frequent occurrence of C. raciborskii in the studied region.

    Reference
    [1] O'NEIL J M, DAVIS T W, BURFORD M A, et al. The rise of harmful cyanobacteria blooms:The potential roles of eutrophication and climate change[J]. Harmful Algae, 2012, 14:313-334. doi:10.1016/j. hal.2011.10.027.
    [2] MOREIRA C, AZEVEDO J, ANTUNES A, et al. Cylindrospermopsin:occurrence, methods of detection and toxicology[J]. J Appl Microbiol, 2013, 114(3):605-620. doi:10.1111/jam.12048.
    [3] BURFORD M A, BEARDALL J, WILLIS A, et al. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylin-drospermopsis raciborskii[J]. Harmful Algae, 2016, 54:44-53.
    [4] BRIAND J F, LEBOULANGER C, HUMBERT J F, et al. Cylindro-spermopsis raciborskii (Cyanobacteria) invasion at mid-latitudes:Selection, wide physiological tolerance, or global warming?[J]. J Phycol, 2004, 40(2):231-238. doi:10.1111/j.1529-8817.2004.03118.x.
    [5] BURFORD M A, MCNEALE K L, MCKENZIE-SMITH F J. The role of nitrogen in promoting the toxic cyanophyte Cylindrospermopsis raciborskii in a subtropical water reservoir[J]. Freshw Biol, 2006, 51(11):2143-2153. doi:10.1111/j.1365-2427.2006.01630.x.
    [6] MOISANDER P H, CHESHIRE L A, BRADDY J, et al. Facultative diazotrophy increases Cylindrospermopsis raciborskii competitiveness under fluctuating nitrogen availability[J]. FEMS Microbiol Ecol, 2012, 79(3):800-811. doi:10.1111/j.1574-6941.2011.01264.x.
    [7] KEHOE M, O'BRIEN K R, GRINHAM A, et al. Primary production of lake phytoplankton, dominated by the cyanobacterium Cylindrosper-mopsis raciborskii, in response to irradiance and temperature[J]. Inland Waters, 2015, 5(2):93-100.
    [8] KOVÁCS A W, PRÉSING M, VÖRÖS L. Thermal-dependent growth characteristics for Cylindrospermopsis raciborskii (Cyanoprokaryota) at different light availabilities:Methodological considerations[J]. Aquat Ecol, 2016, 50(4):623-638. doi:10.1007/s1045.
    [9] BONILLA S, GONZÁLEZ-PIANA M, SOARES M C S, et al. The success of the cyanobacterium Cylindrospermopsis raciborskii in freshwaters is enhanced by the combined effects of light intensity and temperature[J]. J Limnol, 2016, 75(3):606-617. doi:10.4081/jlimnol.2016.1479.
    [10] BITTENCOURT-OLIVEIRA M C, BUCH B, HEREMAN T C, et al. Effects of light intensity and temperature on Cylindrospermopsis raciborskii (Cyanobacteria) with straight and coiled trichomes:Growth rate and morphology[J]. Braz J Biol, 2012, 72(2):343-351. doi:10.1590/S1519-69842012000200016.
    [11] WU Z X, SHI J Q, XIAO P, et al. Phylogenetic analysis of two cyanobacterial genera Cylindrospermopsis and Raphidiopsis based on multi-gene sequences[J]. Harmful Algae, 2011, 10(5):419-425. doi:10.1016/j.hal.2010.05.001.
    [12] YAMAMOTO Y, SHIAH F K. Factors related to the dominance of Cylindrospermopsis raciborskii (cyanobacteria) in a shallow pond in northern Taiwan[J]. J Phycol, 2012, 48(4):984-991. doi:10.1111/j. 1529-8817.2012.01184.x.
    [13] YANG Y M, JIANG Y G, Li X C, et al. Variations of growth and toxin yield in Cylindrospermopsis raciborskii under different phosphorus concentrations[J]. Toxins, 2017, 9(1):13. doi:10.3390/toxins9010013.
    [14] LEI L M, PENG L, HUANG X H, et al. Occurrence and dominance of Cylindrospermopsis raciborskii and dissolved cylindrospermopsin in urban reservoirs used for drinking water supply, South China[J]. Environ Monit Assess, 2014, 186(5):3079-3090. doi:10.1007/s 10661-013-3602-8.
    [15] ZHAO L, LEI L M, PENG L, et al. Seasonal dynamic and driving factors of Cylindrospermopsis raciborskii in Zhenhai Reservoir, Guangdong Province[J]. J Lake Sci, 2017, 29(1):193-199. doi:10.18307/2017.0121. 赵莉, 雷腊梅, 彭亮, 等. 广东省镇海水库拟柱孢藻(Cylindrosper-mopsis raciborskii)的季节动态及驱动因子分析[J]. 湖泊科学, 2017, 29(1):193-199. doi:10.18307/2017.0121.
    [16] CHONUDOMKUL D, YONGMANITCHAI W, THEERAGOOL G, et al. Morphology, genetic diversity, temperature tolerance and toxicity of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) strains from Thailand and Japan[J]. FEMS Microbiol Ecol, 2004, 48(3):345-355. doi:10.1016/j.femsec.2004.02.014.
    [17] YU T, DAI J J, LEI L M, et al. Effects of temperature, irradiance and nitrate on the growth of Cylindrospermopsis raciborskii N8[J]. J Lake Sci, 2014, 26(3):441-446. doi:10.18307/2014.0315. 于婷, 戴景峻, 雷腊梅, 等. 温度、光照强度及硝酸盐对拟柱孢藻(Cylindrospermopsis raciborskii N8)生长的影响[J]. 湖泊科学, 2014, 26(3):441̵#8211;446. doi:10.18307/2014.0315.
    [18] YU T. Effects of temperature, light and nitrogen on the growth and trichome morphology of Cylindrospermopsis raciborskii[D]. Guang-zhou:Jinan University, 2014. 于婷. 温度、光照及氮源对拟柱孢藻生长和藻丝形态的影响[D]. 广州:暨南大学, 2014.
    [19] FABBRO L D, DUIVENVOORDEN L J. Profile of a bloom of the cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju in the Fitzroy River in tropical central Queensland[J]. Mar Freshw Res, 1996, 47(5):685-694. doi:10.1071/MF9960685.
    [20] XIAO M, WILLIS A, BURFORD M A. Differences in cyanobacterial strain responses to light and temperature reflect species plasticity[J]. Harmful Algae, 2017, 62:84-93. doi:10.1016/j.hal.2016.12.008.
    [21] WIEDNER C, RÜCKER J, BRÜGGEMANN R, et al. Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions[J]. Oecologia, 2007, 152(3):473-484. doi:10.1007/s00442-007-0683-5.
    [22] PICCINI C, AUBRIOT L, FABRE A, et al. Genetic and ecophysio-logical differences of South American Cylindrospermopsis raciborskii isolates support the hypothesis of multiple ecotypes[J]. Harmful Algae, 2011, 10(6):644-653. doi:10.1016/j.hal.2011.04.016.
    [23] YAMAMOTO Y, SHIAH F K. Growth, trichome size and akinete production of Cylindrospermopsis raciborskii (Cyanobacteria) under different temperatures:Comparison of two strains isolated from the same pond[J]. Phycol Res, 2014, 62(2):147-152. doi:10.1111/pre. 12040.
    [24] WILLIS A, CHUANG A W, WOODHOUSE J N, et al. Intraspecific variation in growth, morphology and toxin quotas for the cyanobac-terium, Cylindrospermopsis raciborskii[J]. Toxicon, 2016, 119:307-310. doi:10.1016/j.toxicon.2016.07.005.
    [25] WILLIS A, ADAMS M P, CHUANG A W, et al. Constitutive toxin production under various nitrogen and phosphorus regimes of three ecotypes of Cylindrospermopsis raciborskii[(Wołoszyńska) Seenayya et Subba Raju] [J]. Harmful Algae, 2015, 47:27-34. doi:10.1016/j. hal.2015.05.011.
    [26] KENESI G, SHAFIK H M, KOVÁCS A W, et al. Effect of nitrogen forms on growth, cell composition and N2 fixation of Cylindrosper-mopsis raciborskii in phosphorus-limited chemostat cultures[J]. Hydrobiologia, 2009, 623(1):191-202. doi:10.1007/s10750-008-9657-9.
    [27] STUCKEN K, JOHN U, CEMBELLA A, et al. Impact of nitrogen sources on gene expression and toxin production in the diazotroph Cylindrospermopsis raciborskii CS-505 and non-diazotroph Raphi-diopsis brookii D9[J]. Toxins, 2014, 6(6):1896-1915. doi:10.3390/toxins6061896.
    [28] SPRŐBER P, SHAFIK H M, PRÉSING M, et al. Nitrogen uptake and fixation in the cyanobacterium Cylindrospermopsis raciborskii under different nitrogen conditions[J]. Hydrobiologia, 2003, 506(1/2/3):169-174. doi:10.1023/B:HYDR.0000008617.90245.5f
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

阮紫曦,于婷,雷腊梅,彭亮,韩博平.光照-温度交互作用及不同氮源对拟柱孢藻生长的影响[J].热带亚热带植物学报,2018,26(2):133~140

Copy
Share
Article Metrics
  • Abstract:1274
  • PDF: 957
  • HTML: 517
  • Cited by: 0
History
  • Received:July 06,2017
  • Revised:September 29,2017
  • Online: March 29,2018
Article QR Code