Heat Tolerance Threshold of Leaves in vitro in Glehnia littoralis and Calystegia soldanella Association with the Mechanism of Growth Stagnation in Summer
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to understand the reason to growth stagnation of Glehnia littoralis in summer, the heat tolerance of leaf metabolic system was studied in comparison with a companion species Calystegia soldanella as reference. The results showed that both of the deactivation temperature of photosynthetic system and the half lethal temperature of cell membrane in G. littoralis were 5℃ lower than those in C. soldanella. In contrast, the activity of the respiration system in both plants were still very high even when the temperatures reached 50℃ with a decline of 10% and 24%, respectively, showing that the respiration system was apparently more heat-resistant than the photosynthetic and membrane systems. The Gaussian regression showed that the ratio of photosynthesis rate to respiration rate was persistently lower in G. littoralis than that in C. soldanella. Therefore, it was suggested that the excessive consumption of the photosynthetic assimilates could be the cause of the summer growth stagnation of G. littoralis. In addition, the overall lower heat-resistance of C. soldanella could also be associated with the summer growth stagnation in G. littoralis, while C. soldanella did not show growth stagnation in summer because of high heat resistance.

    Reference
    [1] MARCO F, BITRIÁN M, CARRASCO P, et al. Genetic engineering strategies for abiotic stress tolerance in plants[M]//BAHADUR B, RAJAM M V, SAHIJRAM L, et al. Plant Biology and Biotechnology. India:Springer, 2015:579-609. doi:10.1007/978-81-322-2283-5_29.
    [2] TAIZ L, ZEIGER E. Plant Physiology[M]. 5th ed. Sunderland, USA:Sinauer Associates, 2010:591-623.
    [3] LAVANIA D, DHINGRA A, SIDDIQUI M H, et al. Current status of the production of high temperature tolerant transgenic crops for cultivation in warmer climates[J]. Plant Physiol Biochem, 2015, 86:100-108. doi:10.1016/j.plaphy.2014.11.019.
    [4] NARAYANAN S, TAMURA P J, ROTH M R, et al. Wheat leaf lipids during heat stress:I. High day and night temperatures result in major lipid alterations[J]. Plant Cell Environ, 2016, 39(4):787-803. doi:10. 1111/pce.12649.
    [5] AL BUSAIDI K T S, FARAG K M. The use of electrolyte leakage procedure in assessing heat and salt tolerance of Ruzaiz date palm (Phoenix dactylifera L.) cultivar regenerated by tissue culture and offshoots and treatments to alleviate the stressful injury[J]. J Hort For, 2015, 7(4):104-111. doi:10.5897/JHF2014.0378.
    [6] KRASENSKY J, JONAK C. Drought, salt, and temperature stressinduced metabolic rearrangements and regulatory networks[J]. J Exp Bot, 2012, 63(4):1593-1608. doi:10.1093/jxb/err460.
    [7] ZHONG L L, ZHOU W, WANG H J, et al. Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress[J]. Plant Cell, 2013, 25(8):2925-2943. doi:10.1105/tpc.113. 111229.
    [8] JESPERSEN D, XU C P, HUANG B R. Membrane proteins associated with heat-induced leaf senescence in a cool-season grass species[J]. Crop Sci, 2015, 55(2):837-850. doi:10.2135/cropsci2014.04.0335.
    [9] SONI M L, YADAVA N D, TALWAR H S, et al. Variability in heat tolerance in Bambara groundnut[Vigna subterranea (L.) Verdc.] [J]. Ind J Plant Physiol, 2015, 20(1):92-96. doi:10.1007/s40502-015-0137-8.
    [10] ALMESELMANI M, DESHMUKH P S, CHINNUSAMY V. Effects of prolonged high temperature stress on respiration, photosynthesis and gene expression in wheat (Triticum aestivum L.) varieties differing in their thermotolerance[J]. Plant Stress, 2012, 6(1):25-32.
    [11] HASANUZZAMAN M, NAHAR K, ALAM M M, et al. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants[J]. Int J Mol Sci, 2013, 14(5):9643-9684. doi:10.3390/ijms 14059643.
    [12] DREW M C. Oxygen deficiency and root metabolism:Injury and acclimation under hypoxia and anoxia[J]. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48:223-250. doi:10.1146/annurev.arplant.48.1. 223.
    [13] BITA C E, GERATS T. Plant tolerance to high temperature in a changing environment:Scientific fundamentals and production of heat stress-tolerant crops[J]. Front Plant Sci, 2013, 4(4):273. doi:10. 3389/fpls.2013.00273.
    [14] BUCHNER O, STOLL M, KARADAR M, et al. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants[J]. Plant Cell Environ, 2015, 38(4):812-826. doi:10.1111/pce.12455.
    [15] HALDIMANN P, FELLER U. Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase[J]. Plant Cell Environ, 2004, 27(9):1169-1183. doi:10. 1111/j.1365-3040.2004.01222.x.
    [16] WANG P, ZHAO L, HOU H L, et al. Epigenetic changes are associated with programmed cell death induced by heat stress in seedling leaves of Zea mays[J]. Plant Cell Physiol, 2015, 56(5):965-976. doi:10. 1093/pcp/pcv023.
    [17] CHEN P Q, YU S L, ZHAN Y N, et al. A review on plant heat stress physiology[J]. Chin Agric Sci Bull, 2006, 22(5):223-227. doi:10. 3969/j.issn.1000-6850.2006.05.060. 陈培琴, 郁松林, 詹妍妮, 等. 植物在高温胁迫下的生理研究进展[J]. 中国农学通报, 2006, 22(5):223-227. doi:10.3969/j.issn.1000-6850.2006.05.060.
    [18] YANG X F, GUO F Q. Research advances in mechanisms of plant leaf senescence under heat stress[J]. Acta Physiol J, 2014, 50(9):1285-1292. doi:10.13592/j.cnki.ppj.2014.1012. 杨小飞, 郭房庆. 高温逆境下植物叶片衰老机理研究进展[J]. 植物生理学报, 2014, 50(9):1285-1292. doi:10.13592/j.cnki.ppj.2014. 1012.
    [19] SHAN R H, SHE M L. Flora Reipublicae Popularis Sinicae, Tomus 55(3)[M]. Beijing:Science Press, 1992:176-177. 单人骅, 佘孟兰. 中国植物志, 第55卷第3分册[M]. 北京:科学出版社, 1992:176-177.
    [20] FU L G. China Plant Red Data Book:Rare and Endangered Plants, Vol. 1[M]. Beijing:Science Press, 1991:698-699. 傅立国. 中国植物红皮书——稀有濒危植物(一)[M]. 北京:科学出版社, 1991:698-699.
    [21] TANG T, ZHENG G W, LI W Q. Defense mechanisms of plants photosystem to heat stress[J]. Chin J Biochem Mol Biol, 2012, 28(2):127-132. 唐婷, 郑国伟, 李唯奇. 植物光合系统对高温胁迫的响应机制[J]. 中国生物化学与分子生物学报, 2012, 28(2):127-132.
    [22] MA T C, XIA J F, WANG Y L, et al. High temperature stress effect on physiological indexes of rice in heading and flowering period[J]. Chin Agric Sci Bull, 2015, 31(24):25-32. 马廷臣, 夏加发, 王元垒, 等. 抽穗扬花期高温胁迫对不同耐热性水稻生理指标的影响[J]. 中国农学通报, 2015, 31(24):25-32.
    [23] HELEN M P B, LAKSHMI P A, NANDAGOPALAN V, et al. Effect of heat treatment on germination, seedling growth and some biochemical parameters of dry seeds of black gram[J]. Int J Pharm Phytopharmacol Res, 2012, 1(4):194-202.
    [24] GUERRA D, CROSATTI C, KHOSHRO H H, et al. Post-transcriptional and post-translational regulations of drought and heat response in plants:A spider's web of mechanisms[J]. Front Plant Sci, 2015, 6:57. doi:10.3389/fpls.2015.00057.
    [25] LIN Y H, HUANG L F, HASE T, et al. Expression of plant ferredoxinlike protein (PFLP) enhances tolerance to heat stress in Arabidopsis thaliana[J]. New Biotechnol, 2015, 32(2):235-242. doi:10.1016/j. nbt.2014.12.001.
    [26] LIU J M, ZHAO Q, YIN Z P, et al. Heat-responsive mechanisms in plants revealed by proteomic analysis:A review[J]. Chin J Appl Ecol, 2015, 26(8):2561-2570. 刘军铭, 赵琪, 尹赜鹏, 等. 利用蛋白质组学技术揭示的植物高温胁迫响应机制[J]. 应用生态学报, 2015, 26(8):2561-2570.
    [27] RANG Z W, ZHOU Q M. Research advances on physiological responses and tolerant mechanism to high temperature stress in rice[J]. Chin Agric Sci Bull, 2015, 31(21):249-258. 穰中文, 周清明. 水稻高温胁迫的生理响应及耐热机理研究进展[J]. 中国农学通报, 2015, 31(21):249-258.
    [28] SGOBBA A, PARADISO A, DIPIERRO S, et al. Changes in antioxidants are critical in determining cell responses to short-and long-term heat stress[J]. Physiol Plant, 2015, 153(1):68-78. doi:10.1111/ppl.12220.
    [29] SUN Y J, FU Y D, DU Y P, et al. Effects of different temperature and light treatments on photosynthetic system Ⅱ in Vitis vinifera L. cv. Cabernet Sauvignon[J]. Sci Agric Sin, 2013, 46(6):1191-1200. doi:10.3864/j.issn.0578-1752.2013.06.012. 孙永江, 付艳东, 杜远鹏, 等. 不同温度/光照组合对‘赤霞珠’葡萄叶片光系统Ⅱ功能的影响[J]. 中国农业科学, 2013, 46(6):1191-1200. doi:10.3864/j.issn.0578-1752.2013.06.012.
    [30] YAMAMOTO Y, AMINAKA R, YOSHIOKA M, et al. Quality control of photosystem Ⅱ:Impact of light and heat stresses[J]. Photosynth Res, 2008, 98(1/2/3):589-608. doi:10.1007/s11120-008-9372-4.
    [31] SREENIVASULU N, BUTARDO V M JR, MISRA G, et al. Designing climate-resilient rice with ideal grain quality suited for hightemperature stress[J]. J Exp Bot, 2015, 66(7):1737-1748. doi:10. 1093/jxb/eru544.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

张萍,郝秀英,蒋小满,朱建军.珊瑚菜和滨旋花离体叶片代谢系统的耐热极限与夏季生长停滞机理的分析[J].热带亚热带植物学报,2017,25(5):503~509

Copy
Share
Article Metrics
  • Abstract:1571
  • PDF: 1229
  • HTML: 352
  • Cited by: 0
History
  • Received:January 20,2017
  • Revised:April 10,2017
  • Online: September 12,2017
Article QR Code