Seasonal Dynamics in Soil Microorganisms Diversity of Evergreen Broad-leaved Forest in Wuyi Mountains, Southeastern China
Author:
Affiliation:

Institute of Agricultural Quality Standards and Testing Technology Research,Fujian Academy of Agricultural Sciences Precise Measurement of Agriculture,Fujian Academy of Agricultural Sciences,Wuyihshan Biological Institute of Fujian Province, Wuyishan, Fujian 354300, China),Institute of Agricultural Quality Standards and Testing Technology Research,Fujian Academy of Agricultural Sciences Precise Measurement of Agriculture,Fujian Academy of Agricultural Sciences,Institute of Agricultural Quality Standards and Testing Technology Research,Fujian Academy of Agricultural Sciences Precise Measurement of Agriculture,Fujian Academy of Agricultural Sciences,Wuyihshan Biological Institute of Fujian Province, Wuyishan, Fujian 354300, China),Institute of Agricultural Quality Standards and Testing Technology Research,Fujian Academy of Agricultural Sciences Precise Measurement of Agriculture,Fujian Academy of Agricultural Sciences,Institute of Agricultural Quality Standards and Testing Technology Research,Fujian Academy of Agricultural Sciences Precise Measurement of Agriculture,Fujian Academy of Agricultural Sciences,Institute of Agricultural Quality Standards and Testing Technology Research,Fujian Academy of Agricultural Sciences Precise Measurement of Agriculture,Fujian Academy of Agricultural Sciences

  • Article
  • | |
  • Metrics
  • |
  • Reference [39]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to understand seasonal dynamics in soil microorganism community of evergreen broad-leaved forest in Wuyi Mountains, Fujian, the microbial diversity in soil was analyzed using the Illumina Miseq high-throughput sequencing technique. The results showed that the soil in evergreen broad-leaved forest in Wuyi Mountains was the typical southern acidic soil. The soil physic-chemical properties had no significant difference among four seasons except for the available potassium, soil temperature and pH. The diversity of soil microorganisms is very rich, and 206 bacterial genera belonging 23 phyla and 17 archaea genera belonging the phyla Thaumarchaeota and Euryarchaeota were identified. The Chao index reflecting the number of bacterial was the highest in the summer, while the Shannon index reflecting bacterial diversity in the summer was lower than that in the spring by 21%. Moreover, the Chao index and Shannon index for archaea in the summer were higher than those in the winter by 21.7% and 0.27%, respectively. There were 83.1% bacteria and 70.0% archaea shared in four reasons, suggesting a good stability of the core microbiome in different reasons in evergreen broad-leaved forest in the Wuyi Mountains. Clustering tree analysis at both of phylum and genus levels indicated that bacterial and archaea community of spring was very close to that of winter, while that of summer exhibited the most different to those of the other three seasons. Heatmap and redundancy analysis indicated that the soil pH was the main environmental factors affected the diversities of bacteria and archaea. The effective potassium, effective carbon and total nitrogen have a great influence on microbial community composition. Therefore, the diversity of soil microorganisms in evergreen broad-leaved forest in Wuyi Mountain had regular changes with the seasons.

    Reference
    [1] Ye X F, Zhang Y J, Lu X M, et al. Research advance on relationship between the soil microbes and soil nutrition [J]. Chin J Soil Sci, 2009, 40(6): 237-241. 叶协锋, 张友杰, 鲁喜梅, 等. 土壤微生物与土壤营养关系研究进展 [J]. 土壤通报, 2009, 40(6): 237-241.
    [2] LIN X G, HU J L. Scientific connotation and ecological service function of soil microbial diversity [J]. Acta Pedol Sin, 2008, 45(5): 892-900. doi: 10.3321/j.issn:0564-3929.2008.05.016. 林先贵, 胡君利. 土壤微生物多样性的科学内涵及其生态服务功能土壤学报, 2008, 45(5): 892-900. doi: 10.3321/j.issn:0564-3929.2008. 05.016.
    [3] WITT C, SETÄLÄ H. Do plant species of different resource qualities form dissimilar energy channels below-ground [J]. Appl Soil Ecol, 2010, 44(3): 270-278. doi: 10.1016/j.apsoil.2010.01.004.
    [4] LIU S R, WANG H, LUAN J W. A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China [J]. Acta Ecol Sin, 2011, 31(19): 5437-5448. 刘世荣, 王晖, 栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展 [J]. 生态学报, 2011, 31(19): 5437-5448.
    [5] JIN Y H, WANG J S, LI L G, et al. Soil enzyme activities in typical vegetation zones along an altitude gradient in Wuyi Mountains [J]. Chin J Ecol, 2011, 30(9): 1955-1961. 金裕华, 汪家社, 李黎光, 等. 武夷山不同海拔典型植被带土壤酶活性特征 [J]. 生态学杂志, 2011, 30(9): 1955-1961.
    [6] DING H, FANG Y M, YANG Q, et al. Community characteristics of a mid-subtropical evergreen broad-leaved forest plot in the Wuyi Mountains, Fujian Province, Southeastern China [J]. Biodiv Sci, 2015, 23(4): 479-492. doi: 10.17520/biods.2015021. 丁晖, 方炎明, 杨青, 等. 武夷山中亚热带常绿阔叶林样地的群落特征 [J]. 生物多样性, 2015, 23(4): 479-492. doi: 10.17520/biods. 2015021.
    [7] DING H, YANG Y F, XU H G, et al. Species composition and community structure of the typical evergreen broad-leaved forest in the Wuyi Mountains of southeastern China [J]. Acta Ecol Sin, 2015, 35(4): 1142-1154. doi: 10.5846/stxb201305050924. 丁晖, 杨云方, 徐海根, 等. 武夷山典型常绿阔叶林动态监测样地: 物种组成与群落结构 [J]. 生态学报, 2015, 35(4): 1142-1154. doi: 10.5846/stxb201305050924.
    [8] ZHUANG T C, LIN P, CHEN R H. A preliminary investigation on dominant genera of heterotrophic bacteria and filamentous fungi in soils under different types of forest on Wuyi Mountain, Fujian [J]. Acta Pedol Sin, 1998, 35(1): 119-123. doi: 10.11766/trxb199701060117. 庄铁诚, 林鹏, 陈仁华. 武夷山不同类型森林土壤细菌、丝状真菌优势菌属的初步研究 [J]. 土壤学报, 1998, 35(1): 119-123. doi: 10. 11766/trxb199701060117.
    [9] HE R, WANG G B, WANG J S, et al. Seasonal variation and its main affecting factors of soil microbial biomass under different vegetations along an elevation gradient in Wuyi Mountains of China [J]. Chin J Ecol, 2009, 28(3): 394-399. 何容, 王国兵, 汪家社, 等. 武夷山不同海拔植被土壤微生物量的季节动态及主要影响因子 [J]. 生态学杂志, 2009, 28(3): 394-399.
    [10] WU Z Y, LIN W X, CHEN Z F, et al. Phospholipid fatty acid analysis of soil microbes at different elevation of Wuyi Mountains [J]. Sci Silv Sin, 2014, 50(7): 105-112. doi: 10.11707/j.1001-7488.20140715. 吴则焰, 林文雄, 陈志芳, 等. 武夷山不同海拔植被带土壤微生物PLFA分析 [J]. 林业科学, 2014, 50(7): 105-112. doi: 10.11707/j.1001-7488.20140715.
    [11] SMALLA K, OROS-SICHLER M, MILLING A, et al. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: Do the different methods provide similar results [J]. J Microbiol Methods, 2007, 69(3): 470-479. doi: 10.1016/j.mimet.2007.02.014.
    [12] HIRSCH P R, MAUCHLINE T H, CLARK I M. Culture-independent molecular techniques for soil microbial ecology [J]. Soil Biol Biochem, 2010, 42(6): 878-887. doi: 10.1016/j.soilbio.2010.02.019.
    [13] DRENOVSKY R E, ELLIOTT G N, GRAHAM K J, et al. Comparison of phospholipid fatty acid (PLFA) and total soil fatty acid methyl esters (TSFAME) for characterizing soil microbial communities [J]. Soil Biol Biochem, 2004, 36(11): 1793-1800. doi: 10.1016/j.soilbio.2004.05.002.
    [14] LEE O O, WANG Y, YANG J K, et al. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea [J]. ISME J, 2011, 5(4): 650-664. doi: 10.1038/ismej. 2010.165.
    [15] GOŁĘBIEWSKI M, DEJA-SIKORA E, CICHOSZ M, et al. 16S rDNA pyrosequencing analysis of bacterial community in heavy metals polluted soils [J]. Microb Ecol, 2014, 67(3): 635-647. doi: 10.1007/s 00248-013-0344-7.
    [16] BAO S D. Soil Agricultural Chemistry analysis [M]. Beijing: China Agriculture Press, 2000: 40,81.鲍士旦. 土壤农化分析 [M]. 北京: 中国农业出版社, 2000: 40,81.
    [17] CAI Y, HAO M D, ZHANG L Q, et al. Effect of cropping systems on microbial diversity in black loessial soil tested by 454 sequencing technology [J]. Acta Agron Sin, 2015, 41(2): 339-346. doi: 10.3724/SP.J.1006.2015.00339. 蔡艳, 郝明德, 张丽琼, 等. 应用454测序技术分析种植制度对黑垆土微生物多样性的影响 [J]. 作物学报, 2015, 41(2): 339-346. doi: 10.3724/SP.J.1006.2015.00339.
    [18] CAO R, ZHANG J C, SI D Y, et al. Seasonal dynamics of soil microbial biomass under different forest types in Fengyang Mountain of Zhejiang [J]. China For Sci Techn, 2014, 28(6): 41-45. doi: 10. 13360/j.issn.1000-8101.2014.06.010. 曹容, 张金池, 司登宇, 等. 浙江凤阳山不同林地类型土壤微生物季节动态 [J]. 林业科技开发, 2014, 28(6): 41-45. doi: 10.13360/j. issn.1000-8101.2014.06.010.
    [19] KULICHEVSKAYA I S, SUZINA N E, LIESACK W, et al. Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the Acidobacteria [J]. Inter J Syst Evol Microbiol, 2010, 60(2): 301-306. doi: 10.1099/ijs.0.013 250-0.
    [20] ŠTURSOVÁ M, ŽIFČÁKOVÁ L, LEIGH M B, et al. Cellulose utilization in forest litter and soil: Identification of bacterial and fungal decomposers [J]. FEMS Microbiol Ecol, 2012, 80(3): 735-746. doi: 10.1111/j.1574-6941.2012.01343.x.
    [21] BALDRIAN P, KOLAŘÍK M, ŠTURSOVÁ M, et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition [J]. ISME J, 2012, 6(2): 248-258. doi: 10.1038/ismej.2011.95.
    [22] JONES R T, ROBESON M S, LAUBER C L, et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses [J]. ISME J, 2009, 3(4): 442-453. doi: 10.1038/ismej. 2008.127.
    [23] SINGH D, SHI J L, ADAMS J M. Bacterial diversity in the mountains of south-west China: climate dominates over soil parameters [J]. J Microbiol, 2013, 51(4): 439-471. doi: 10.1007/s12275-013-2446-9.
    [24] ZHANG Y G, CONG J, LU H, et al. An integrated study to analyze soil microbial community structure and metabolic potential in two forest types [J]. PLoS One, 2014, 9(4): e93773. doi: 10.1371/journal. pone.0093773.
    [25] BI J T, HE D H. Research advances in effects of plant on soil microbial diversity [J]. Chin Agri Sci Bull, 2009, 25(9): 244-250. 毕江涛, 贺达汉. 植物对土壤微生物多样性的影响研究进展 [J]. 中国农学通报, 2009, 25(9): 244-250.
    [26] LIU X, WANG S J, LIU X M, et al. Compositional characteristics and variations of soil microbial community in Karst Area of Puding County, Guizhou Province, China [J]. Earth Environ, 2015, 43(5): 490-497. doi: 10.14050/j.cnki.1672-9250.2015.05.002. 刘兴, 王世杰, 刘秀明, 等. 贵州喀斯特地区土壤细菌群落结构特征及变化 [J]. 地球与环境, 2015, 43(5): 490-497. doi: 10.14050/j. cnki.1672-9250.2015.05.002.
    [27] SHEN C C, XIONG J B, ZHANG H Y, et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain [J]. Soil Biol Biochem, 2013, 57: 204-211. doi: 10.1016/j. soilbio.2012.07.013.
    [28] YANG G P, NAN L, JIA H B, et al. Bacterial genetic adversity in soils and their correlation with vegetation [J]. Acta Genet Sin, 2000, 27(3): 278-282. 杨官品, 男兰, 贾海波, 等. 土壤细菌遗传多样性及其与植被类型相关性研究 [J]. 遗传学报, 2000, 27(3): 278-282.
    [29] REN J, YAN B, HONG K. Comparison of bacterial and archaeal community of mangrove soil under different vegetation in Dong-zhaigang, Hainan Island [J]. Acta Microbiol Sin, 2012, 52(6): 736-743. 任健, 阎冰, 洪葵. 海南东寨港红树林不同植被土壤微生物群落结构比较 [J]. 微生物学报, 2012, 52(6): 736-743.
    [30] YUAN H Z, WU H, GE T D, et al. Effects of long-term fertilization on bacterial and archaeal diversity and community structure within sub-tropical red paddy soils [J]. Chin J Appl Ecol, 2015, 26(6): 1807-1813. 袁红朝, 吴昊, 葛体达, 等. 长期施肥对稻田土壤细菌、古菌多样性和群落结构的影响 [J]. 应用生态学报, 2015, 26(6): 1807-1813.
    [31] KEMNITZ D, KOLB S, CONRAD R. High abundance of Crenar-chaeota in a temperate acidic forest soil [J]. FEMS Microbiol Ecol, 2007, 60(3): 442-448. doi: 10.1111/j.1574-6941.2007.00310.x.
    [32] SUN G W, XIAO J Z, CHEN X B, et al. Archabacterial diversity features in surface seawater of Yangshan Deep-water Port [J]. J Microbiol, 2014, 34(5): 13-20. doi: 10.3969/j.issn.1005-7021.2014.05. 003. 孙国伟, 肖劲洲, 陈小兵, 等. 洋山深水港海域表层海水中古菌多样性特点 [J]. 微生物学杂志, 2014, 34(5): 13-20. doi: 10.3969/j. issn.1005-7021.2014.05.003.
    [33] THOMS C, GLEIXNER G. Seasonal differences in tree species’ influence on soil microbial communities [J]. Soil Biol Biochem, 2013, 66: 239-248. doi: 10.1016/j.soilbio.2013.05.018.
    [34] LIPSON D A. Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients [J]. FEMS Microbiol Ecol, 2007, 59(2): 418-427. doi: 10.1111/j.1574-6941.2006.00240.x.
    [35] WILLIAMS M A, JANGID K, SHANMUGAM S G, et al. Bacterial communities in soil mimic patterns of vegetative succession and ecosystem climax but are resilient to change between seasons [J]. Soil Biol Biochem, 2013, 57: 749-757. doi: 10.1016/j.soilbio.2012.08.023.
    [36] RASCHE F, KNAPP D, KAISER C, et al. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest [J]. ISME J, 2011, 5(3): 389-402. doi: 10.1038/ismej.2010.138.
    [37] BALDRIAN P, ŠNAJDR J, MERHAUTOVÁ V, et al. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change [J]. Soil Biol Biochem, 2013, 56: 60-68. doi: 10.1016/j.soilbio.2012. 01.020.
    [38] NACKE H, THÜRMER A, WOLLHERR A, et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils [J]. PLoS One, 2011, 6(2): e17000. doi: 10.1371/journal.pone.0017000.
    [39] ROUSK J, BÅÅTH E, BROOKES P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil [J]. ISME J, 2010, 4(10): 1340-1351. doi: 10.1038/ismej.2010.58
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李巍,刘洋,罗钦,徐辉,刘文静,罗土炎,涂杰峰.武夷山常绿阔叶林土壤微生物多样性的季节动态[J].热带亚热带植物学报,2017,25(2):115~126

Copy
Share
Article Metrics
  • Abstract:1770
  • PDF: 1097
  • HTML: 319
  • Cited by: 0
History
  • Received:July 26,2016
  • Revised:October 26,2016
  • Adopted:November 28,2016
  • Online: March 16,2017
Article QR Code