Effect of Anthocyanins on Salt Tolerance in Arabidopsis thaliana
Author:
Affiliation:

Room 414, School of life sciences, South China Normal Univercity,Room 414, School of life sciences, South China Normal Univercity,Room 414, School of life sciences, South China Normal Univercity,Room 414, School of life sciences, South China Normal Univercity

  • Article
  • | |
  • Metrics
  • |
  • Reference [25]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    To reveal the defense mechanism of anthocyanins under salt stress, the physiological responses to NaCl stress in three Arabidopsis mutants (tt3, tt4 and tt3tt4) deficient in anthocyanin biosynthesis and wild type (WT) plants were studied. The mutants tt3, tt4 and tt3tt4 are deficient in dihydroflavonol 4-reductase gene (DFR), chalcone synthase gene (CHS) and both DFR and CHS, respectively, these genes encode enzymes that act in the anthocyanin biosynthesis pathway. The results showed that, under salinity stress, the three mutants with lower anthocyanin accumulation exhibited greater reductions in PSII maximum quantum yield (Fv/Fm), effective quantum yield (Yield), electron transport rate (ETR), photochemical quenching (qP) and non-photochemical quenching (NPQ) and greater increases in lipid peroxidation, than the WT. Histochemical stains with nitroblue tetrazolium (NBT) showed that superoxide anion free radical (O2·-) in tt3tt4 was the highest, followed by tt3 or tt4, and then by WT. These suggest that anthocyanins play an important role in plant adaptations to salinity stress, possibly via serving as a kind of osmo-regulator and antioxidant. Therefore, anthocyanin contents can be used as an indicator for screening of salt-tolerant crops.

    Reference
    [1] FLOWERS T J, YEO A R. Breeding for salinity resistance in crop plants:Where next?[J]. Funct Plant Biol, 1995, 22(6):875-884. doi:10.1071/PP9950875.
    [2] WANG B S, ZHAO K F, ZOU Q. Advances in mechanism of crop salt tolerance and strategies for raising crop salt tolerance[J]. Chin Bull Bot, 1997, 14(S1):26-31. 王宝山, 赵可夫, 邹琦. 作物耐盐机理研究进展及提高作物抗盐性的对策[J]. 植物学报, 1997, 14(S1):26-31.
    [3] VILJOVIC-JOVANOVIC S D, PIGNOCCHI C, NOCTOR G, et al. Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system[J]. Plant Physiol, 2001, 127(2):426-435. doi:10.1104/pp. 010141.
    [4] BECANA M, MORAN J F, ITURBE-ORMAETXE I. Iron dependent oxygen free radical generation in plants subjected to environmental stress:Toxicity and antioxidant protection[J]. Plant Soil, 1998, 201(1):137-147. doi:10.1023/A:1004375732137.
    [5] NOCTOR G, FOYER C H. Ascorbic and glutathione:Keeping active oxygen under control[J]. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49(1):249-279. doi:10.1146/annurev.arplant.49.1.249.
    [6] ZENG X Q, CHOW W S, SU L J, et al. Protective effect of supple-mental anthocyanins on Arabidopsis leaves under high light[J]. Physiol Plant, 2010, 138(2):215-225. doi:10.1111/j.1399-3054.2009. 01316.x.
    [7] HATIER J H B, GOULD K S. Foliar anthocyanins as modulators of stress signals[J]. J Theor Biol, 2008, 253(3):625-627. doi:10.1016/j.jtbi.2008.04.018.
    [8] HAMILTON W D, BROWN S P. Autumn tree colours as a handicap signal[J]. Proc Roy Soc B Biol Sci, 2001, 268(1475):1489-1493. doi:10.1098/rspb.2001.1672.
    [9] OSWIN S D, KATHIERESAN K, DEIVA-OSWIN S. Pigments in mangrove species of Pichavaram[J]. Ind J Mar Sci, 1994, 23(1):64-66.
    [10] SEARLE I, HE Y H, TURCK F, et al. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis[J]. Gene Dev, 2006, 20(7):898-912. doi:10.1101/gad.373506.
    [11] REDDY V S, DASH S, REDDY A R. Anthocyanin pathway in rice (Oryza sativa L.):Identification of a mutant showing dominant inhibition of anthocyanins in leaf and accumulation of proantho-cyanidins in pericarp[J]. Theor Appl Genet, 1995, 91(2):301-312. doi:10.1007/BF00220892.
    [12] ROMERO-PUERTAS M C, RODRÍGUEZ-SERRANO M, CORPAS F J, et al. Cadmium-induced subcellular accumulation of O2·- and H2O2 in pea leaves[J]. Plant Cell Environ, 2004, 27(9):1122-1134. doi:10. 1111/j.1365-3040.2004.01217.x.
    [13] TUKUMOTO L R, MAZZA G. Assessing antioxidant and prooxidant activities of phenolic compounds[J]. J Agric Food Chem, 2000, 48(8):3597-3604. doi:10.1021/jf000220w.
    [14] SHIRLEY B W. Flavonoid biosynthesis:"New" functions for an "old" pathway[J]. Trends Plant Sci, 1996, 1(11):377-382. doi:10.1016/S 1360-1385(96)80312-8.
    [15] SHIRLEY B W, KUBASEK W L, STORZ G, et al. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis[J]. Plant J, 1995, 8(5):659-671. doi:10.1046/j.1365-313X.1995.08050659.x.
    [16] BREŚ W, BANDURSKA H, KUPSKA A, et al. Responses of pelargonium (Pelargonium×hortorum L. H. Bailey) to long-term salinity stress induced by treatment with different NaCl doses[J]. Acta Physiol Plant, 2016, 38:26. doi:10.1007/s11738-015-2048-8.
    [17] YANG L, ZHAO H T, WANG Z J, et al. Functional analysis of DA1-related Protein 2 in Arabidopsis under salt stress[J]. Chin J Eco-Agri, 2014, 22(1):63-71. doi:10.3724/SP.J.1011.2014.30396. 杨磊, 赵红桃, 王志娟, 等. 拟南芥DA1-related Protein 2基因参与调控植物对盐胁迫的响应[J]. 中国生态农业学报, 2014, 22(1):63-71. doi:10.3724/SP.J.1011.2014.30396.
    [18] GENTY B, BRIANTAIS J M, BAKER N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochim Biophys Acta Gen Subj, 1989, 990(1):87-92. doi:10.1016/S0304-4165(89)80016-9.
    [19] SCHREIBER U, BILGER W, NEUBAUER C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis[J]. Ecol Studies Anal Synth, 1995, 100:49-70. doi:10. 1007/978-3-642-79354-7_3.
    [20] BONGI G, LORETO F. Gas exchange properties of salt-stressed olive (Olea europea L.) leaves[J]. Plant Physiol, 1989, 90(4):1408-1416. doi:10.1104/pp.90.4.1408.
    [21] SIMILLIE R M, NOTT R. Salt tolerance in crop plant s monitored by chlorophyll fluorescence in vivo[J]. Plant Physiol, 1982, 70(4):1049-1054. doi:10.1104/pp.70.4.1049.
    [22] LIANG H Y, LI H P, ZHENG J B, et al. Effect of NaCl stress on photosystem Ⅱ functions in Populus nigra leaves[J]. Hebei J For Orch Res, 2000, 15(2):101-104. doi:10.3969/j.issn.1007-4961.2000. 02.001. 梁海永, 李会平, 郑均宝, 等. NaCl胁迫对欧洲黑杨组培植株叶片光系统Ⅱ功能的影响[J]. 河北林果研究, 2000, 15(2):101-104. doi:10.3969/j.issn.1007-4961.2000.02.001.
    [23] MITTOVA V, TAL M, VOLOKITA M, et al. Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species[J]. Physiol Plant, 2002, 115(3):393-400. doi:10. 1034/j.1399-3054.2002.1150309.x.
    [24] YAN F. Studies on physiological regulation mechanism of exogenous ALA to cucumber seedlings under salt stress[D]. Yangling:North-west Agricultural and Forestry University, 2014:29-36. 燕飞. 外源5-氨基乙酰丙酸(ALA)对盐胁迫下黄瓜幼苗生理调控效应研究[D]. 杨凌:西北农林科技大学, 2014:29-36.
    [25] CHALKER-SCOTT L. Environmental significance of anthocyanin in plant stress responses[J]. Photochem Photobiol, 1999, 70(1):1-9. doi:10. 1111/j.1751-1097.1999.tb01944.x.
    Related
    Cited by
Get Citation

张晓红,孙蓓育,张泰劼,彭长连.花色素苷对拟南芥耐盐性的影响[J].热带亚热带植物学报,2016,24(6):680~688

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 04,2016
  • Revised:April 17,2016
  • Adopted:May 27,2016
  • Online: November 15,2016
Article QR Code