Metabolic Characteristics of Invasive Plant Ipomoea cairica in South China by de novo Transcriptomics
Author:
Affiliation:

South China Normal University,South China Normal University,South China Normal University,South China Normal University,South China Normal University,Lund University,South China Normal University,

  • Article
  • | |
  • Metrics
  • |
  • Reference [54]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    To explore the molecular mechanisms of Ipomoea cairica invasiveness in south China, the de novo transcriptomes from I. cairica, and two related species, I. digitata and I. nil, were sequenced and assembled. There were 56551 all-unigenes obtained by assembling the reads, among them 56522 all-unigenes were annotated, including 7815, 15615, and 180201 all-unigenes in GO, COG and KEGG databases, respectively. Moreover, the activities of NR and GS in I. cairica, key enzyme in metabolic pathway for nitrogen, were greater than those in related species. In addition, the transcriptome data showed that the genes of key enzymes in secondary metabolism, such as pal, 4cl, cad, chs, and chi, had synergic differential expression in I. cairica, I. digitata and I. nil. The production synthesis from metabolic pathway could play a key role in stress-resistant, growth and allelopathy of I. cairica. The RT-qPCR verification results of key genes were similar to those from transcriptome. Therefore, the result of the present research might explain partly the successful invasiveness of I. cairica in South China at the level of molecular biology.

    Reference
    [1] Gong N, Wang Y T, Björn L O, et al. DNA C-value of 20 invasive alien species and 3native species in South China [J]. Arch Biol Sci, 2014, 66(4): 1465-1472. doi: 10.2298/ABS1404465G.
    [2] Li W H, Tian X S, Luo J N, et al. Effects of simulated defoliation on growth and photosynthetic characteristics of an invasive liana, Ipomoea cairica (Convolvulaceae) [J]. Invas Plant Sci Manage, 2012, 5(2): 282-289. doi: 10.1614/IPSM-D-11-00088.1.
    [3] Li W H, Luo J N, Tian X S, et al. Patterns of defoliation and their effect on the plant growth and photosynthetic characteristics of Ipomoea cairica [J]. Weed Biol Manage, 2012, 12(1): 40-46. doi: 10.1111/j. 1445-6664.2012.00432.x.
    [4] Wang R L, Zeng R S, Peng S L, et al. Elevated temperature may accelerate invasive expansion of the liana plant Ipomoea cairica [J]. Weed Res, 2011, 51(6): 574-580. doi: 10.1111/j.1365-3180.2011. 00884.x.
    [5] Thomas T G, Rao S, Lai S. Mosquito larvicidal properties of essential oil of an indigenous plant, Ipomoea cairica Linn. [J]. Jpn J Infect Dis, 2004, 57(4): 176-177.
    [6] Thiagaletchumi M, Zuharah W F, Rami R A, et al. Assess-ment of residual bio-efficacy and persistence of Ipomoea cairica plant extract against Culex quinquefasciatus Say mosquito [J]. Trop Biomed, 2014, 31(3): 466-476.
    [7] Lin R J, Chen C Y, Lo W L. Cytotoxic activity of Ipomoea cairica [J]. Nat Prod Res, 2008, 22(9): 747-753. doi: 10.1080/14786410701 628739.
    [8] Lin Z F, Chen L H, Zhang W Q. Peroxidase from Ipomoea cairica (L.) SW. isolation, purification and some properties [J]. Proc Biochem, 1996, 31(5): 443-448. doi: 10.1016/0032-9592(95)00088-7.
    [9] Shekhar S, Mishra D, Buragohain A K, et al. Comparative analysis of phytochemicals and nutrient availability in two contrasting cultivars of sweet potato (Ipomoea batatas L.) [J]. Food Chem, 2015, 173: 957-965. doi: 10.1016/j.foodchem.2014.09.172.
    [10] Li R, Yu C, Li Y, et al. SOAP2: An improved ultrafast tool for short read alignment [J]. Bioinformatics, 2009, 25(15): 1966-1967. doi: 10. 1093/bioinformatics/btp336.
    [11] Iseli C, Joneneel C V, Bucher P. ESTScan: A program for detecting, evaluating, and reconstructing potential coding regions in EST sequences [C]// Proceedings of the 7th International Conference on Intelligent Systems for Molecular Biology. California: AAAI Press, 1999: 138-158.
    [12] Pertea G, Huang X Q, Liang F, et al. TIGR gene indices clustering tools (TGICL): A software system for fast clustering of large EST datasets [J]. Bioinformatics, 2003, 19(5): 651-652. doi: 10.1093/ bioinformatics/btg034.
    [13] Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment [J]. Nucl Acids Res, 2008, 36: D480-D484. doi: 10.1093/nar/gkm882.,
    [14] Audic S, Claverie J M. The significance of digital gene expression profiles [J]. Genome Res, 1997, 7(10): 986-995. doi: 10. 1101/gr.7.10.986.
    [15] Benjamini Y, Yekutieli D. False discovery rate: Adjusted multiple confidence intervals for selected parameters [J]. J Amer Statist Assoc, 2005, 100(469): 71-81. doi: 10.1198/016214504000001907.
    [16] Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq [J]. Nat Methods, 2008, 5(7): 621-628. doi: 10.1038/nmeth.1226.
    [17] Conesa A, Götz S, García-Gómez J M, et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research [J]. Bioinformatics, 2005, 21(18): 3674-3676. doi: 10. 093/bioinformatics/bti610.
    [18] Pfaffl M W. A new mathematical model for relative quatification in real-time RT-PCR [J]. Nucl Acids Res, 2001, 29(9): e45. doi: 10.1093/ nar/29.9.e45.
    [19] LU R K. Chemical Analysis of Soil Agriculture [M]. Beijing: China Agricultural Science and Technology Press, 2000: 308-311. (in Chinese)
    [20] Hao J J, Kang Z L, Yu Y. Plant Physiology Experimental Techniques [M]. Beijing: Chemical Industry Press, 2007: 62-64. (in Chinese)
    [21] Zuo Y M, Liu Y X, Zhang F S. Effects of improved iron nutrition of peanut intercropped with maize on carbon and nitrogen metabolism and nitrogen-fixing of peanut nodul [J]. Acta Ecol Sin, 2004, 24(11): 2584-2590. doi: 10.3321/j.issn:1000-0933.2004.11.034. (in Chinese)
    [22] Guo Z L, Shen A L, Kou C L, et al. The relationship between NRA and nitrogen efficiency of different wheat varieties after flowering [J]. Chin Agri Sci Bull, 2008, 24(5): 219-223. (in Chinese)
    [23] Besson-Bard A, Gravot A, Richaud P, et al. Nitric oxide contributes to cadmium toxicity in Arabidopsis thaliana by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake [J]. Plant Physiol, 2009, 149(3): 1302-1315. doi: 10.1104/ pp.108.133348.
    [24] Becker T W, Carrayol E, Hirel B. Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves: Localization, relative proportion and their role in ammonium assimilation or nitrogen transport [J]. Planta, 2000, 211(6): 800-806. doi: 10.1007/s004250 000355.
    [25] Norton J B, Monaco T A, Norton U. Mediterranean annual grasses in western North America: Kids in a candy store [J]. Plant Soil, 2007, 298(1/2): 1-5. doi: 10.1007/s11104-007-9364-8.
    [26] Elberse I A M, van Damme J M M, van Tienderen P H. Plasticity of growth characteristics in wild barley (Hordeum spontaneum) in response to nutrient limitation [J]. J Ecol, 2003, 91(3): 371-382. doi: 10.1046/j.1365-2745.2003.00776.x.
    [27] Li W H, Zhang C B, Lin J Y, et al. Characteristics of nitrogen metabolism and soil nitrogen of invasive plants [J]. J Trop Subtrop Bot, 2008, 16(4): 321-327.
    [28] Meyer C, Stitt M. Nitrate reduction and signaling [M]// Lea P J, Morot-Gaudry J-F. Plant Nitrogen. Berlin Heidelberg: Springer, 2001: 37-59. doi: 10.1007/978-3-662-04064-5_2.
    [29] Oliveira H C, Justino G C, Sodek L, et al. Amino acid recovery does not prevent susceptibility to Pseudomonas syringae in nitrate reductase double-deficient Arabidopsis thaliana plants [J]. Plant Sci, 2009, 176(1): 105-111. doi: 10.1016/j.plantsci.2008.09.017.
    [30] Diao Z W, Yu X, Wang Y B, et al. Study on nitrate reductase and nitrite reductase coupled regulation of sugar beet [J]. J Nucl Agri Sci, 2014, 28(1): 138-145. doi: 10.11869/j.issn.1000-8551.2014. 01.0138. (in Chinese)
    [31] Kyaing M S, Gu L J, Cheng H M. The role of nitrate reductase and nitrite reductase in plant [J]. Curr Biotechn, 2011, 1(3): 159-164.
    [32] Miflin B J, Habash D Z. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops [J]. J Exp Bot, 2002, 53(370): 979-987.
    [33] Cai H M, Zhou Y, Xiao J H, et al. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress reponses in rice [J]. Plant Cell Rep, 2009, 28(3): 527-537. doi: 10. 1007/s00299-008-0665-z.
    [34] Gulati A, Jaiwal P K. Effect of NaCl on nitrate reductitase, glutamate dehydrogenase and glutamate in Vigna radiata calli [J]. Biol Plant, 1996, 38: 177-183.
    [35] Robin S A, Slade A P, Fore G G, et al. The role of glutamate dehydrogenase in plant nitrogen metabolism [J]. Plant Physiol, 1991, 95(2): 509-516.
    [36] Paczek V, Dubois F, Sangwan R, et al. Cellular and subcellular localisation of glutamine synthetase and glutamate dehydrogenase in grapes gives new insights on the regulation of carbon and nitrogen metabolism [J]. Planta, 2002, 216(2): 245-254. doi: 10.1007/s00425-002-0854-x.
    [37] Gaufiehon L, Reisdorf-Cren M, Rothstein S J, et al. Biological functions of asparagine synthetase in plants [J]. Plant Sci, 2010, 179(3): 141-153. doi: 10.1016/j.plantsci.2010.04.010.
    [38] Brears T, Liu C, Knight T J, et al. Ectopic overexpression of asparagine synthetase in transgenic tobacco [J]. Plant Physiol, 1993, 103(4): 1285-1290.
    [39] Capell T, Christou P. Progress in plant metabolic engineering [J]. Curr Opin Biotechn, 2004, 15(2): 148-154. doi: 10.1016/j.copbio.2004. 01.009.
    [40] Zhang K C, Jin Q, Can Y P, et al. Research progress of PAL and its control function of important secondary metabolites [J]. Chin Agri Sci Bull, 2008, 24(12): 59-62. (in Chinese)
    [41] Sanmartin M, Drogoudi P A, Lyons T, et al. Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone [J]. Planta, 2003, 216(6): 918-928.
    [42] Xia J R, Huang J. Impacts of nitrogen and phosphorus on inorganic carbon utilization and carbonic anhydrase activity in Nitzschia closterium f. minutissima [J]. Acta Ecol Sin, 2010, 30(15): 4085-4092. (in Chinese)
    [43] Rath M, Salas J, Parhy B, et al. Identification of genes induced in proteoid roots of white lupin under nitrogen and phosphorus deprivation, with functional characterization of a formamidase [J]. Plant Soil, 2010, 334(1): 137-150. doi: 10.1007/s11104-010-0373-7.
    [44] Khalik K A, Osman G, Al-Amoudi W. Genetic diversity and taxonomic relationships of some Ipomoea species based on analysis of RAPD-PCR and SDS-PAGE of seed proteins [J]. Ausr J Crop Sci, 2012, 6(6): 1088-1093.
    [45] Yoon V, Nodwell J R. Activating secondary metabolism with stress and chemicals [J]. J Ind Microbiol Biotechn, 2014, 41(2): 415-424. doi: 10.1007/s10295-013-1387-y.
    [46] Wang Y, Xie H, Zhang Z Q, et al. Relationship between chilling injury of banana fruit stored at low temperature and PAL activity and soluble proteins [J]. J Fruit Sci, 2004, 21(2): 149-152. doi: 10.3969/ j.issn.1009-9980.2004.02.013. (in Chinese)
    [47] Páska C, Innocenti G, Kunvári M, et al. Lignan production by Ipomoea cairica callus cultures [J]. Phytochemistry, 1999, 52(5): 879-883. doi: 10.1016/S0031-9422(99)00304-0.
    [48] Pickett J A. Genetic engineering of secondary metabolism for plant protection [J]. New Biotechn, 2014, 31(Suppl): S55. doi: 10.1016/j.nbt. 2014.05.1737.
    [49] Thakur V K, Thakur M K. Recent advances in green hydrogels from lignin: A review [J]. Int J Biol Macromol, 2015, 72: 834-847. doi: 10.1016/j.ijbiomac.2014.09.044.
    [50] Ma R J, Wang N L, Zhu H, et al. Isolation and identification of alleiochemicals from invasive plant Ipomoea cairica [J]. Allel J, 2009, 24(1): 77-84.
    [51] erreira A A, Silveira D, Alves R B, et al. Constituents of Ipomoea cairica ethanolic extract [J]. Chem Nat Comp, 2005, 41(4): 465. doi: 10.1007/s10600-005-0178-8.
    [52] Ferreira A A, Amaral F A, Duarte I D G, et al. Antinoci-ceptive effect from Ipomoea cairica extract [J]. J Ethnopharmac, 2006, 105(1/2): 148-153. doi: 10.1016/j.jep.2005.10.012.
    [53] Páska C, Innocenti G, Ferlin M, et al. Pinoresinol from Ipomoea cairica callus cultures [J]. Nat Prod Lett, 2002, 16(5): 359-363.
    [54] Ahbirami R, Zutma F W, Yahaya Z S, et al. Oviposition deterring and oviciding potentials of Ipomoea cairica L. leaf extract against dengue vectors [J]. Trop Biomed, 2014, 31(3): 456-465.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

耿妍,陈玲玲,鲁焕,宁婵娟,BJ&#;RN Lars Olof,李韶山.de novo转录组学分析华南地区入侵植物五爪金龙代谢特征[J].热带亚热带植物学报,2016,24(2):128~142

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 29,2015
  • Revised:September 25,2015
  • Adopted:December 11,2015
  • Online: March 28,2016
Article QR Code