Establishment of the Regeneration System of Cotyledonary Node and Genetic Transformation of Pti4 Gene in Cowpea
Author:
Affiliation:

Institute of Pomology & Olericulture,Sichuan Agricultural University,Institute of Pomology & Olericulture,Sichuan Agricultural University,College of Horticulture,,Sichuan Agricultural University,College of Horticulture,,Sichuan Agricultural University,Agricultural science research institute of Sichuan Dazhou,Institute of Pomology & Olericulture,Sichuan Agricultural University

  • Article
  • | |
  • Metrics
  • |
  • Reference [23]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to obtain genetic transformation system of cowpea (Vigna unguiculata), its cotyledon nodes with one cotyledon of ‘Chengjiang 7’ was used as explants, the regeneration system and Pti4 genetic transformation system by Agrobacterium-medium were studied. The results showed that the optimum mediums for aseptic seedling, adventitious bud introduction and adventitious bud elongation were MSB5 + 6-BA 3.0 mg L–1, MSB5 + 6-BA 1.0 mg L–1 + KT 0.06 mg L–1 and MSB5 + 6-BA 0.5 mg L–1 + IBA 0.2 mg L–1, respectively. Adventitious buds could rapidly rooting on MS medium to obtain full plantlets. The cotyledon node was used as receptor, the pit4 gene mediated by Agrobacterium was successfully transformed into the genome of resistant buds of ‘Chengjiang 7’. Therefore, the establishment of high efficient regeneration system for cowpea laid basis for studying on genetic transformation.

    Reference
    [1]Han S Y, Hou N X, Zhang Z J. High yield culture techniques of cowpea in the North [J]. N Hort, 2014(3): 201-202. 韩淑艳, 侯霓霞, 张智杰. 北方豇豆高产栽培技术 [J]. 北方园 艺, 2014(3): 201-202.
    [2] Raji A A J, Oriero E, Odeseye B, et al. Plant regeneration and Agrobacterium-mediated transformation of African cowpea [Vigna unguiculata (L.) Walp] genotypes using embryonic axis explants[J]. J Food Agric Environ, 2008, 6(3/4): 350-356.
    [3] Zhang B, Zhao M, Gao Z Q, et al. Optimizing transformation systems of spring wheat mediated via agrobacterium tumefaciens[J]. Acta Agri Nuel Sin, 2007, 21(2): 124-127. doi: 10.3969/j.issn.1000-8551.2007.02.005. 张彬, 赵明, 高志强, 等. 农杆菌介导春小麦遗传转化体系的 优化研究 [J]. 核农学报, 2007, 21(2): 124-127. doi: 10.3969/j.issn.1000-8551.2007.02.005.
    [4] Subramaniam M K, Royan-Subramaniam S, Gopinath P M, et al. Histogenesis, organogenesis and morphogenesis in callus cultures of Trigonella foenumgraecum L. and Vigna unguiculata L. [J]. Curr Sci, 1968, 37(14): 398-399.
    [5] Aasim M, Khawar KM, Özcan S. In vitro micropropagation from plumular apices of Turkish cowpea (Vigna unguiculata L.) cultivar Akkiz [J]. Sci Hort, 2009, 122(3): 468-471; doi:10.1016/j.scienta.2009.05.023.
    [6] Li X M. Establishment of in vitro high efficient regeneration system of cowpea (Vina unguiculata L. Walp.) and screening test for its resistance to kanamycin [D]. Chengdu: Sichuan Agricultural University, 2011: 1-27. 李晓梅. 豇豆高效离体再生体系及其卡那霉素筛选体系的建立[D]. 成都: 四川农业大学, 2011: 1-27.
    [7] Luo Q. Establish and optimize regeneration system of cowpea (Vigna unguiculata L. Walp.) cotyledonary nodes and immature embryos [D]. Chengdu: Sichuan Agricultural University, 2013: 24-28. 罗倩. 豇豆子叶节与幼胚再生体系建立与优化 [D]. 成都: 四川 农业大学, 2013: 24-28.
    [8] Brar M S, Al-Khayri J M, Morelock T E, et al. Genotypic response of cowpea Vigna unguiculata (L.) to in vitro regeneration from cotyledon explants [J]. In vitro Cell Dev Biol, 1999, 35(1): 8-12. doi: 10.1007/s11627-999-0002-4.
    [9] Van Le B, de Carvalho M H C, Zuily-Fodil Y, et al. Direct whole plant regeneration of cowpea [Vigna unguiculata (L.) Walp.] from cotyledonary node thin cell layer explants [J]. J Plant Physiol, 2002, 159(11): 1255-1258, doi:10.1078/0176-1617-00789.
    [10] Raveendar S, Premkumar A, Sasikumar S, et al. Development of a rapid, highly efficient system of organogenesis in cowpea Vigna unguiculata (L.) Walp. [J]. S Afr J Bot, 2009, 75(1): 17-21. doi: 10.1016/j.sajb.2008.05.009.
    [11] Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures [J]. Physiol Plant, 1962, 15(3): 473-479. doi: 10.1111/j.1399-3054.1962.tb08052.x.
    [12] Gamborg O L, Miller R A, Ojima K. Nutrient requirements of suspension cultures of soybean root cells [J]. Exp Cell Res, 1968, 50(1): 151-158. doi: 10.1016/0014-4827(68)90403-5.
    [13] Gong Z H. Biotechnology of Horticultural Plant [M]. Beijing: Science Press, 2008: 24-25. 巩振辉. 园艺植物生物技术 [M]. 北京: 科学出版社, 2008: 24-25.
    [14] Wang G L, Fang H Y. Plant Gene Engineering [M]. Beijing: Science Press, 2009: 435-438. 王关林, 方宏筠. 植物基因工程 [M]. 北京: 科学出版社, 2009: 435-438.
    [15] Liu C Q, Yin W L, Xia X L. Somatic Embryogenesis and Histocytology of Hippophae rhamnoides L. and Sequoia sempervirens (D. Don.) Endl. [M]. Beijing: China Environmental Science Press, 2009: 11-36. 刘翠琼, 尹伟伦, 夏新莉. 中国沙棘和北美红杉体细胞胚胎诱 导及其组织细胞学的研究 [M]. 北京: 中国环境科学出版社, 2009: 11-36.
    [16] Hinchee M A W, Connor-Ward D V, Newell C A, et al. Production of transgenic soybean plants using Agrobacteriummediated DNA transfer [J]. Nat Biotechn, 1988, 6(8): 915-922. doi: 10.1038/nbt0888-915.
    [17] Popelka J C, Gollasch S, Moore A, et al. Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny [J]. Plant Cell Rep, 2006, 25(4): 304-312. doi: 10.1007/s00299-005-0053-x.
    [18] Solleti S K, Bakshi S, Sahoo L. Additional virulence genes in conjunction with efficient selection scheme and compatible culture regime enhance recovery of stable transgenic plants in cowpea via Agrobacterium tumefaciens-mediated transformation [J]. J Biotechn, 2008, 135(1): 97-104. doi: 10.1016/j.jbiotec.2008.02.008.
    [19] Diallo M S, Ndiaye A, Sagna M, et al. Plants regeneration from African cowpea variety (Vigna unguiculata L. Walp.) [J]. Afr J Biotechn, 2008, 7(16): 2828-2833. doi: 10.5897/AJB07.619.
    [20] Chaudhury D, Madanpotra S, Jaiwal R, et al. Agrobacterium tumefaciens-mediated high frequency genetic transformation of an Indian cowpea (Vigna unguiculata L.) cultivar and transmission of transgenes into progeny [J]. Plant Sci, 2007, 172(4): 692-700. doi: 10.1016/j.plantsci.2006.11.009.
    [21] Chandra A, Pental D. Regeneration and genetic transformation of grain legumes: An overview [J]. Curr Sci, 2003, 84(3): 381-387.
    [22] Sharma K K, Anjaiah V V. An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation[J]. Plant Sci, 2000, 159(1): 7-19. doi: 10.1016/S0168-9452(00)00294-6.
    [23] Zheng Y X, Huang B C, Ji J, et al. Establishment of Agrobacterium mediated transformation system of Eustoma grandiflorum [J]. Acta Agric Nuel Sin, 2009, 23(4): 597-601. 郑阳霞, 黄彬城, 季静, 等. 农杆菌介导的洋桔梗遗传转化体系 的建立 [J]. 核农学报, 2009, 23(4): 597-601.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

姜建业,谢永东,王一鸣,赵丽,铁曼曼,唐懿.豇豆子叶节再生体系建立及Pti4基因遗传转化[J].热带亚热带植物学报,2015,23(5):534~542

Copy
Share
Article Metrics
  • Abstract:2269
  • PDF: 2049
  • HTML: 0
  • Cited by: 0
History
  • Received:May 17,2015
  • Revised:July 16,2015
  • Adopted:July 20,2015
  • Online: October 14,2015
Article QR Code