Soil Microbial Community Structure Diversities of Castanopsis carlesii Nature Forests in the Mid-subtropics of China
Author:
Affiliation:

College of Geographical Sciences,Fujian Normal University,College of Geographical Sciences,Fujian Normal University

  • Article
  • | |
  • Metrics
  • |
  • Reference [41]
  • |
  • Related [20]
  • |
  • Cited by [0]
  • | |
  • Comments
    Abstract:

    In order to understand the soil microbial community structure, its diversities of Castanopsis carlesii forests in Wuyi Mountain and Jian'ou Wanmulin Nature Reserves at northern Fujian, eastern China were investigated by phospholipid fatty acid (PLFAs) method. The results showed that soil microbial community composition in C. carlesii forest was rich, the diversity index, richness index and evenness index of soil microbial communities for the two forests were 2.92-3.01, 25.84-28.23 and 0.88-0.90, respectively. The total PLFAs, bacterial PLFAs, fungal PLFAs, actinomycete PLFAs, gram-positive bacterial PLFAs, and gram-negative bacterial PLFAs at soil depth of 0-10 cm were higher than those of 10-20 cm, and those in Jian'ou were higher than those in Wuyi Mountain. The ratio of gram-positive bacterial PLFAs to gram-negative bacterial PLFAs at soil depth of 10-20 cm was higher than that of 0-10 cm. In each soil layer, the content of bacterial PLFAs was significantly higher than those of fungal PLFAs, accounting for 46.0%-50.2% and 10.0%-11.5%, respectively, indicating that bacteria were dominated in soil microbial community. Principal component analysis showed that the difference in soil microbial community structure came from the sampling site.

    Reference
    [1] Kennedy A C, Smith K L. Soil microbial diversity and the sustainability of agricultural soils[J]. Plant Soil, 1995, 170(1):75-86. doi:10.1007/BF02183056.
    [2] Falkowski P G, Fenchel T, Delong E F. The microbial engines that drive Earth's biogeochemical cycles[J]. Science, 2008, 320(5879):1034-1039. doi:10.1126/science.1153213.
    [3] Zhang Q F, Liu B, Lin Y Z, et al. The diversity of phospholipid fatty acid (PLFA) biomarker for the microbial community in soil[J]. Acta Ecol Sin, 2009, 29(8):4127-4137. doi:10.3321/j.issn:1000-0933.2009.08.014. 张秋芳, 刘波, 林营志, 等. 土壤微生物群落磷脂脂肪酸PLFA 生物标记多样性[J]. 生态学报, 2009, 29(8):4127-4137. doi:10.3321/j.issn:1000-0933.2009.08.014.
    [4] Waldrop M P, Firestone M K. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils[J]. Microb Ecol, 2006, 52(3):470-479. doi:10.1007/s00248-006-9100-6.
    [5] Zhang D, Zhang Y X, Qu L Y, et al. Effects of altitude on soil microbial community in Quercus liaotungensis forest[J]. Chin J Appl Ecol, 2012, 23(8):2041-2048. 张地, 张育新, 曲来叶, 等. 海拔对辽东栎林地土壤微生物群落 的影响应[J]. 应用生态学报, 2012, 23(8):2041-2048.
    [6] Fierer N, Mccain C M, Meir P, et al. Microbes do not follow the elevational diversity patterns of plants and animals[J]. Ecology, 2011, 92(4):797-804. doi:10.1890/10-1170.1.
    [7] Yu S, Wang J K, Li S Y. Effect of long-term fertilization on soil microbial community structure in corn field with the method of PLFA[J]. Acta Ecol Sin, 2008, 28(9):4221-4227. doi:10.3321/j.issn:1000-0933.2008.09.019. 于树, 汪景宽, 李双异. 应用PLFA方法分析长期不同施肥处 理对玉米地土壤微生物群落结构的影响[J]. 生态学报, 2008, 28(9):4221-4227. doi:10.3321/j.issn:1000-0933.2008.09.019.
    [8] Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil:A review[J]. Biol Fert Soils, 1999, 29(2):111-129. doi:10. 1007/s003740050533.
    [9] Liu B R, Jia G M, Chen J, et al. A review of methods for studying microbial diversity in soils[J]. Pedosphere, 2006, 16(1):18-24. doi:10.1016/S1002-0160(06)60021-0.
    [10] Zhong W H, Gu T, Wang W, et al. The effects of mineral fertilizer and organic manure on soil microbial community and diversity[J]. Plant Soil, 2010, 326(1):511-522. doi:10.1007/s11104-009-9988-y.
    [11] Grayston S J, Griffith G S, Mawdsley J L, et al. Accounting for variability in soil microbial communities of temperate upland grassland ecosystems[J]. Soil Biol Biochem, 2001, 33(4):533- 551. doi:10.1016/S0038-0717(00)00194-2.
    [12] Luo D, Shi Z M, Tang J C, et al. Soil microbial community structure of monoculture and mixed plantation stands of native tree species in south subtropical China[J]. Chin J Appl Ecol, 2014, 25(9):2543-2550. 罗达, 史作民, 唐敬超, 等. 南亚热带乡土树种人工纯林及混 交林土壤微生物群落结构[J]. 应用生态学报, 2014, 25(9):2543-2550.
    [13] Bossio D A, Scow K M. Impacts of carbon and flooding on soil microbial communities:Phospholipid fatty acid profiles and substrate utilization patterns[J]. Microb Ecol, 1998, 35(3):265-278. doi:10.1007/s002489900082.
    [14] Zak D R, Ringelberg D B, Pregitzer K S, et al. Soil microbial communities beneath populus grandidentata grown under elevated atmospheric CO2[J]. Ecol Appl, 1996, 6(1):257-262. doi:10.2307/2269568.
    [15] Sampedro L, Jeannotte R, Whalen J K. Trophic transfer of fatty acids from gut microbiota to the earthworm Lumbricus terrestris L.[J]. Soil Biol Biochem, 2006, 38(8):2188-2198. doi:10.1016/j.soilbio.2006.02.001.
    [16] Marhan S, Kandeler E, Scheu S. Phospholipid fatty acid profiles and xylanase activity in particle size fractions of forest soil and casts of Lumbricus terrestris L. (Oligochaeta, Lumbricidae)
    [J]. Appl Soil Ecol, 2007, 35(2):412-422. doi:10.1016/j.apsoil.2006.06.003.
    [17] Frostegård A, Bååth E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil[J]. Biol Fert Soils, 1996, 22(1):59-65. doi:10.1007/BF00384433.
    [18] Joergensen R G, Potthoff M. Microbial reaction in activity, biomass, and community structure after long-term continuous mixing of a grassland soil[J]. Soil Biol Biochem, 2005, 37(7):1249-1258. doi:10.1016/j.soilbio.2004.11.021.
    [19] Potthoff M, Steenwerth K L, Jackson L E, et al. Soil microbial community composition as affected by restoration practices in California grassland[J]. Soil Biol Biochem, 2006, 38(7):1851- 1860. doi:10.1016/j.soilbio.2005.12.009.
    [20] Tian Q, Xia H P, Zhou L X. Analysis of soil microbial diversity by phospholipid fatty acid method in coniferous forest and Schima superba plantation in Heshan, Guangdong Province
    [J]. J Trop Subtrop Bot, 2011, 19(2):97-104. doi:10.3969/j.issn.1005-3395.2011.02.001. 田倩, 夏汉平, 周丽霞. 磷脂脂肪酸法分析鹤山针叶林和荷 木林的土壤微生物多样性[J]. 热带亚热带植物学报, 2011, 19(2):97-104. doi:10.3969/j.issn.1005-3395.2011.02.001.
    [21] Han M, Jiao R Z, Dong Y H. Distribution pattern of microbes in the deciduous broad-leaved forest soil and screening of function bacteria in Wolong Nature Reserve[J]. Sci Silv Sin, 2013, 49(10):113-117. doi:10.11707/j.10017488.20131018. 韩梅, 焦如珍, 董玉红. 卧龙自然保护区落叶阔叶林土壤微 生物分布规律及功能菌的筛选[J]. 林业科学, 2013, 49(10):113-117. doi:10.11707/j.10017488.20131018.
    [22] Frostegård Å, Bååth E, Tunlio A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis[J]. Soil Biol Biochem, 1993, 25(6):723-730. doi:10.1016/0038-0717(93)90113-P.
    [23] Wang Q K, Wang S L. Soil microbial properties and nutrients in pure and mixed Chinese fir plantations[J]. J For Res, 2008, 19(2):131-135. doi:10.1007/s11676-008-0022-7.
    [24] Saetre P, Bååth E. Spatial variation and patterns of soil microbial community structure in a mixed spruce-birch stand[J]. Soil Biol Biochem, 2000, 32(7):909-917. doi:10.1016/S0038- 0717(99)00215-1.
    [25] Kourtev P S, Ehrenfeld J G, Håggblom M. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities[J]. Soil Biol Biochem, 2003, 35(7):895-905. doi:10.1016/S0038-0717(03)00120-2.
    [26] de Vries F T, Hoffland E, van Eekeren N, et al. Fungal/bacterial ratios in grasslands with contrasting nitrogen management[J]. Soil Biol Biochem, 2006, 38(8):2092-2103. doi:10.1016/j.soilbio.2006.01.008.
    [27] Cao Z P, Li D P, Han X M. The fungal to bacterial ratio in soil food webs, and its measurement[J]. Acta Ecol Sin, 2011, 31(16):4741-4748. 曹志平, 李德鹏, 韩雪梅. 土壤食物网中的真菌/细菌比率及测 定方法[J]. 生态学报, 2011, 31(16):4741-4748.
    [28] Ingwersen J, Poll C, Streck T, et al. Micro-scale modelling of carbon turnover driven by microbial succession at a biogeochemical interface[J]. Soil Biol Biochem, 2008, 40(4):864-878. doi:10.1016/j.soilbio.2007.10.018.
    [29] Blagodatskaya E V, Anderson T H. Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils[J]. Soil Biol Biochem, 1998, 30(10):1269-1274. doi:10.1016/S0038-0717(98)00050-9.
    [30] Wen Q, Lin Q M, Zhao X R, et al. Application of PLFA analysis in determination of soil microbial community structure in woodland, cropland and grassland in farmland-pasture interleaving zone of north china[J]. Acta Ped Sin, 2008, 45(2):321-327. doi:10.3321/j.issn:0564-3929.2008.02.018. 文倩, 林启美, 赵小蓉, 等. 北方农牧交错带林地、耕地和草 地土壤微生物群落结构特征的PLFA分析[J]. 土壤学报, 2008, 45(2):321-327. doi:10.3321/j.issn:0564-3929.2008.02.018.
    [31] Chiu C Y, Chen T H, Imberger K, et al. Particle size fractionation of fungal and bacterial biomass in subalpine grassland and forest soils[J]. Geoderma, 2006, 130(3):265-271. doi:10.1016/j.geoderma.2005.01.025.
    [32] Zhou L X, Yi W M, Yi Z G, et al. Soil microbial characteristics in rehabilitation process of degraded ecosystems in Heshan
    [J]. J Trop Subtrop Bot, 2004, 12(3):202-206. doi:10.3969/j.issn.1005-3395.2004.03.002. 周丽霞, 蚁伟民, 易志刚, 等. 鹤山退化生态系统恢复过程中 土壤微生物的特性[J]. 热带亚热带植物学报, 2004, 12(3):202-206. doi:10.3969/j.issn.1005-3395.2004.03.002.
    [33] Hansen R A. Red oak litter promotes a microarthropod functional group that accelerates its decomposition[J]. Plant Soil, 1999, 209(1):37-45. doi:10.1023/A:1004506414711.
    [34] Jiao R Z, Yang C D, Sun Q W, et al. Changes in soil microbial amount and biomass during the development of Chinese fir plantation[J]. Sci Silv Sin, 2005, 41(6):163-165. doi:10.3321/j.issn:1001-7488.2005.06.028. 焦如珍, 杨承栋, 孙启武, 等. 杉木人工林不同发育阶段土壤 微生物数量及其生物量的变化[J]. 林业科学, 2005, 41(6):163-165. doi:10.3321/j.issn:1001-7488.2005.06.028.
    [35] Jia G M, Cao J, Wang C Y, et al. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, northwest China[J]. For Ecol Manage, 2005, 217(1):117-125. doi:10.1016/j.foreco.2005.05.055.
    [36] Luo H Y, Jiang X J, Xie D T, et al. Distribution patterns of, and the effects of tillage type on, bacterial and fungal biomass within soil water-stable aggregates[J]. Acta Ecol Sin, 2009, 29(8):4588-4594. doi:10.3321/j.issn:1000-0933.2009.08.069. 罗红燕, 蒋先军, 谢德体, 等. 真菌和细菌生物量在土壤团聚体 中的分布和耕作响应[J]. 生态学报, 2009, 29(8):4588-4594. doi:10.3321/j.issn:1000-0933.2009.08.069.
    [37] Vieublé L, Chenu C, Soulas G. Variability of pesticide mineralization in individual soil aggregates of milimeter size[J]. Dev Soil Sci, 2002, 28(1):127-136. doi:10.1016/S0166-2481(02)80049-6.
    [38] Peng Y L, Yang M N, Cai X B. Influence of soil factors on species diversity of arbuscular mycorrhizal (AM) fungi in Stipa steppe of Tibet Plateau[J]. Chin J Appl Ecol, 2010, 21(5):1258-1263. 彭岳林, 杨敏娜, 蔡晓布. 西藏高原针茅草地土壤因子对丛枝 菌根真菌物种多样性的影响[J]. 应用生态学报, 2010, 21(5):1258-1263.
    Comments
    Comments
    分享到微博
    Submit
Get Citation

韩世忠,高人,李爱萍,马红亮,尹云锋,司友涛,陈仕东,蔡献贺,程清平,郑群瑞.中亚热带地区米槠天然林土壤微生物群落结构的多样性[J].热带亚热带植物学报,2015,23(6):653~661

Copy
Share
Article Metrics
  • Abstract:2133
  • PDF: 2192
  • HTML: 0
  • Cited by: 0
History
  • Received:April 15,2015
  • Revised:May 19,2015
  • Adopted:July 13,2015
  • Online: December 01,2015
Article QR Code