Research Progress on Structure and Evolution of Plant Centromeres
Author:
Affiliation:

Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, China

  • Article
  • | |
  • Metrics
  • |
  • Reference [90]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The plant centromere is the most important chromosome domain mediating the assembly of kinetochore. The rapid divergent evolution of centromeric repeat sequences and function conservation of centromeres among different species ensure correct segregation and faithful transmission of chromosome in mitosis and meiosis. Along with the development of chromatin immunoprecipitation (ChIP), ChIP-chip, and ChIP-sequencing (ChIP-seq) technologies, three milestone discoveries have achieved in plant centromere research since the last 20 years, such as a lot of new knowledge on the structure, function, and evolution of centromeres from model plants, the fundamental kinetochore protein CENH3 used to delimiting the size and boundaries of centromere, the neocentromeres activated from non-centromeric regions stably transmitted to subsequent generations. The research progress on structure, function, and evolution of plant centromeres are reviewed and the remaining questions of plant centromere studies are discussed.

    Reference
    [1] Hong X J. Certromeres and their evolution [J]. J SW China Norm Univ, 1988(1): 108-114. 洪锡钧. 着丝点及其进化 [J]. 西南师范大学学报, 1988(1): 108-114.
    [2] Yu H G, Hiatt E N, Dawe R K. The plant kinetochore [J]. Trends Plant Sci, 2000, 5(12): 543-547.
    [3] Cleveland D W, Mao Y H, Sullivan K F. Centromeres and kinetochores: From epigenetics to mitotic checkpoint signaling [J]. Cell, 2003, 112(4): 407-421.
    [4] Brinkley B R, Valdivia M M, Tousson A, et al. The kinetochore: Structure and molecular characterization [C]//Hyams J, Brinkley B R. Mitosis: Moleculars and Mechanisms. New York: Academic Press, 1989: 77-118.
    [5] Wang G X, Zhang X W, Jin W W. An overview of plant centromeres[J]. J Genet Genom, 2009, 36(9): 529-537. 王桂香, 张学勇, 金危危. 植物着丝粒研究进展 [J]. 遗传学报, 2009, 36(9): 529-537.
    [6] Melters D P, Bradnam K R, Young H A, et al. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution [J]. Genome Biol, 2013, 14(1): R10.
    [7] Wu J Z, Yamagata H, Hayashi-Tsugane M, et al. Composition and structure of the centromeric region of rice chromosome 8 [J]. Plant Cell, 2004, 16(4): 967-976.
    [8] Henikoff S, Ahmad K, Malik H S. The centromere paradox: Stable inheritance with rapidly evolving DNA [J]. Science, 2001, 293(5532): 1098-1102.
    [9] Ma J X, Bennetzen J L. Recombination, rearrangement, reshuffling, and divergence in a centromere region of rice [J]. Proc Natl Acad Sci USA, 2006, 103(2): 383-388.
    [10] Gao D Y, Gill N, Kim H R, et al. A lineage-specific centromere retrotransposon in Oryza brachyantha [J]. Plant J, 2009, 60(5): 820-831.
    [11] Yan H H, Talbert P B, Lee H R, et al. Intergenic locations of rice centromeric chromatin [J]. PLoS Biol, 2008, 6(11): e286.
    [12] Wu Y F, Kikuchi S, Yan H H, et al. Euchromatic subdomains in rice centromeres are associated with genes and transcription [J]. Plant Cell, 2011, 23(11): 4054-4064.
    [13] Nagaki K, Cheng Z K, Ouyang S, et al. Sequencing of a rice centromere uncovers active genes [J]. Nat Genet, 2004, 36(2): 138-145.
    [14] Kamm A, Galasso I, Schmidt T, et al. Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species [J]. Plant Mol Biol, 1995, 27(5): 853-862.
    [15] Kawabe A, Nasuda S. Structure and genomic organization of centromeric repeats in Arabidopsis species [J]. Mol Gen Genom, 2005, 272(6): 593-602.
    [16] Heslop-Harrison J S, Brandes A, Schwarzacher T. Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabidopsis species [J]. Chromosome Res, 2003, 11(3): 241-253.
    [17] Nagaki K, Song J Q, Stupar R M, et al. Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres [J]. Genetics, 2003, 163(2): 759-770.
    [18] Pélissier T, Tutois S, Deragon J M, et al. Athila, a new retroelement from Arabidopsis thaliana [J]. Plant Mol Biol, 1995, 29(3): 441-452.
    [19] Gindullis F, Desel C, Galasso I, et al. The large-scale organization of the centromeric region in Beta species [J]. Genome Res, 2001, 11(2): 253-265.
    [20] Schmidt T, Heslop-Harrison J S. High-resolution mapping of repetitive DNA by in situ hybridization: Molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens [J]. Plant Mol Biol, 1996, 30(6): 1099-1113.
    [21] Schmidt T, Metzlaff M. Cloning and characterization of a Beta vulgaris satellite DNA family [J]. Gene, 1991, 101(2): 247-250.
    [22] Leach C R, Donald T M, Franks T K, et al. Organisation and origin of a B chromosome centromeric sequence from Brachycome dichromosomatica [J]. Chromosoma, 1995, 103(10): 708-714.
    [23] Aragón-Alcaide L, Miller T, Schwarzacher T, et al. A cereal centromeric sequence [J]. Chromosoma, 1996, 105(5): 261-268.
    [24] Harrison G E, Heslop-Harrison J S. Centromeric repetitive DNA sequences in the genus Brassica [J]. Theor Appl Genet, 1995, 90(2): 157-165.
    [25] Houben A, Schroeder-Reiter E, Nagaki K, et al. CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley [J]. Chromosoma, 2007, 116(3): 275-283.
    [26] Chang S B, Yang T J, Datema E, et al. FISH mapping and molecular organization of the major repetitive sequences of tomato [J]. Chromosome Res, 2008, 16(7): 919-933.
    [27] Lee H R, Zhang W L, Langdon T, et al. Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species [J]. Proc Natl Acad Sci USA, 2005, 102(33): 11793-11798.
    [28] Cheng Z K, Dong F G, Langdon T, et al. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon [J]. Plant Cell, 2002, 14(8): 1691-1704.
    [29] Dong F G, Miller J T, Jackson S A, et al. Rice (Oryza sativa) centromeric regions consist of complex DNA [J]. Proc Natl Acad Sci USA, 1998, 95(14): 8135-8140.
    [30] Kamm A, Schmidt T, Heslop-Harrison J S. Molecular and physical organization of highly repetitive, undermethylated DNA from Pennisetum glaucum [J]. Mol Gen Genet, 1994, 244(4): 420-425.
    [31] Entani T, Iwano M, Shiba H, et al. Centromeric localization of an S-RNase gene in Petunia hybrida Vilm. [J]. Theor Appl Genet, 1999, 99(3/4): 391-397.
    [32] Hizume M, Shibata F, Maruyama Y, et al. Cloning of DNA sequences localized on proximal fluorescent chromosome bands by microdissection in Pinus densiflora Sieb. & Zucc. [J]. Chromosoma, 2001, 110(5): 345-351.
    [33] Nagaki K, Murata M. Characterization of CENH3 and centromereassociated DNA sequences in sugarcane [J]. Chromosome Res, 2005, 13(2): 195-203.
    [34] Francki M G. Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye (Secale cereale L.)[J]. Genome, 2001, 44(2): 266-274.
    [35] Tek A L, Jiang J M. The centromeric regions of potato chromosomes contain megabase-sized tandem arrays of telomeresimilar sequence [J]. Chromosoma, 2004, 113(2): 77-83.
    [36] Gong Z Y, Wu Y F, Koblížková A, et al. Repeatless and repeatbased centromeres in potato: Implications for centromere evolution[J]. Plant Cell, 2012, 24(9): 3559-3574.
    [37] Miller J T, Jackson S A, Nasuda S, et al. Cloning and characterization of a centromere-specific repetitive DNA element from Sorghum bicolor [J]. Theor Appl Genet, 1998, 96(6-7): 832-839.
    [38] Kikuchi S, Kishii M, Shimizu M, et al. Centromere-specific repetitive sequences from Torenia, a model plant for interspecific fertilization, and whole-mount FISH of its interspecific hybrid embryos [J]. Cytogenet Genome Res, 2005, 109(1/2/3): 228-235.
    [39] Kishii M, Nagaki K, Tsujimoto H. A tandem repetitive sequence located in the centromeric region of common wheat (Triticum aestivum) chromosomes [J]. Chromosome Res, 2001, 9(5): 417-428.
    [40] Cheng Z J, Murata M. A centromeric tandem repeat family originating from a part of Ty3/gypsy: Retroelement in wheat and its relatives [J]. Genetics, 2003, 164(2): 665-672.
    [41] Liu Z, Yue W, Li D Y, et al. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres [J]. Chromosoma, 2008, 117(5): 445-456.
    [42] Goel S, Raina S N, Ogihara Y. Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of nuclear ribosomal DNA in the Phaseolus-Vigna complex [J]. Mol Phylogenet Evol, 2002, 22(1): 1-19.
    [43] Zhong C X, Marshall J B, Topp C, et al. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3 [J]. Plant Cell, 2002, 14(11): 2825-2836.
    [44] Page B T, Wanous M K, Birchler J A. Characterization of a maize chromosome 4 centromeric sequence: Evidence for an evolutionary relationship with the B chromosome centromere [J]. Genetics, 2001, 159(1): 291-302.
    [45] Alfenito M R, Birchler J A. Molecular characterization of a maize B chromosome centric sequence [J]. Genetics, 1993, 135(2): 589-597.
    [46] Saunders V A, Houben A. The pericentromeric heterochromatin of the grass Zingeria biebersteiniana (2n=4) is composed of Zbcen1-type tandem repeats that are intermingled with accumulated dispersedly organized sequences [J]. Genome, 2001, 44(6): 955-961.
    [47] Martinez-Zapater J M, Estelle M A, Somerville C R. A high repeated sequence in Arabidopsis thaliana [J]. Mol Gen Genet, 1986, 204(3): 417-423.
    [48] Jin W W, Melo J R, Nagaki K, et al. Maize centromeres: Organization and functional adaptation in the genetic background of oat [J]. Plant Cell, 2004, 16(3): 571-581.
    [49] Lee H R, Neumann P, Macas J, et al. Transcription and evolutionary dynamics of the centromeric satellite repeat CentO in rice [J]. Mol Biol Evol, 2006, 23(12): 2505-2520.
    [50] Copenhaver G P, Nickel K, Kuromori T, et al. Genetic definition and sequence of Arabidopsis centromeres [J]. Science, 1999, 286(5449): 2468-2474.
    [51] Houben A, Schubert I. DNA and proteins of plant centromeres[J]. Curr Opin Plant Biol, 2003, 6(6): 554-560.
    [52] Langdon T, Seago C, Mende M, et al. Retrotransposon evolution in diverse plant genomes [J]. Genetics, 2000, 156(1): 313-325.
    [53] Hosouchi T, Kumekawa N, Tsuruoka H, et al. Physical mapbased sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3 [J]. DNA Res, 2002, 9(4): 117-121.
    [54] Lim K B, Yang T J, Hwang Y J, et al. Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species [J]. Plant J, 2007, 49(2): 173-183.
    [55] Jackson S A, Jiang J, Friebe B, et al. Structure of the rye midget chromosome analyzed by FISH and C-banding [J]. Genome, 1997, 40(5): 782-784.
    [56] Fan C Z, Walling J G, Zhang J W, et al. Conservation and purifying selection of transcribed genes located in a rice centromere [J]. Plant Cell, 2011, 23(8): 2821-2830.
    [57] Jiang J M. Rice centromeres [C]//Jiang J M, Birchler J A. Plant Centromere Biology. Iowa: John Wiley & Sons, Inc., 2013: 15-24.
    [58] ten Hoopen R, Manteuffel R, Doležel J, et al. Evolutionary conservation of kinetochore protein sequences in plants [J]. Chromosoma, 2000, 109(7): 482-489.
    [59] ten Hoopen R, Schleker T, Manteuffel R, et al. Transient CENPE-like kinetochore proteins in plants [J]. Chromosome Res, 2002, 10(7): 561-570.
    [60] Rattner J B, Rao A, Fritzler M J, et al. CENP-F is a ca. 400 kDa kinetochore protein that exhibits a cell-cycle dependent localization[J]. Cell Motil Cytoskeleton, 1993, 26(3): 214-226.
    [61] Yu H G, Muszynski M G, Dawe R K. The maize homologue of the cell cycle checkpoint protein MAD2 reveals kinetochore substructure and contrasting mitotic and meiotic localization patterns [J]. J Cell Biol, 1999, 145(3): 425-435.
    [62] Binarova P, Cihalikova J, Dolezel J. Localization of MPM-2 recognized phosphoproteins and tubulin during cell cycle progression in synchronized Vicia faba root meristem cells [J]. Cell Biol Int, 1993, 17(9): 847-856.
    [63] Starr D A, Williams B C, Li Z X, et al. Conservation of the centromere/kinetochore protein ZW10 [J]. J Cell Biol, 1997, 138(6): 1289-1301.
    [64] Schmit A C, Stoppin V, Chevrier V, et al. Cell cycle dependent distribution of a centrosomal antigen at the perinuclear MTOC or at the kinetochores of higher plant cells [J]. Chromosoma, 1994, 103(5): 343-351.
    [65] Binarová P, Hause B, Doležel J, et al. Association of γ-tubulin with kinetochore/centromeric region of plant chromosomes [J]. Plant J, 1998, 14(6): 751-757.
    [66] Talbert P B, Masuelli R, Tyagi A P, et al. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant [J]. Plant Cell, 2002, 14(5): 1053-1066.
    [67] Dawe R K, Reed L M, Yu H G, et al. A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore [J]. Plant Cell, 1999, 11(7): 1227-1238.
    [68] Suzuki T, Ide N, Tanaka I. Immunocytochemical visualization of the centromeres during male and female meiosis in Lilium longiflorum [J]. Chromosoma, 1997, 106(7): 435-445.
    [69] Yang M, Hu Y, Lodhi M, et al. The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation [J]. Proc Natl Acad Sci USA, 1999, 96(20): 11416-11421.
    [70] Chan G K, Liu S T, Yen T J. Kinetochore structure and function[J]. Trends Cell Biol, 2005, 15(11): 589-598.
    [71] Nagaki K, Terada K, Wakimoto M, et al. Centromere targeting of alien CENH3s in Arabidopsis and tobacco cells [J]. Chromosome Res, 2010, 18(2): 203-211.
    [72] Cooper J L, Henikoff S. Adaptive evolution of the histone fold domain in centromeric histones [J]. Mol Biol Evol, 2004, 21(9): 1712-1718.
    [73] Ravi M, Chan S W. Haploid plants produced by centromeremediated genome elimination [J]. Nature, 2010, 464(7288): 615-618.
    [74] Lermontova I, Rutten T, Schubert I. Deposition, turnover, and release of CENH3 at Arabidopsis centromeres [J]. Chromosoma, 2011, 120(6): 633-640.
    [75] Sanei M, Pickering R, Kumke K, et al. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids [J]. Proc Natl Acad Sci USA, 2011, 108(33): E498-E505.
    [76] Lermontova I, Schubert I. CENH3 for establishing and maintaining centromeres [C]//Jiang J M, Birchler J A. Plant Centromere Biology. Iowa: John Wiley & Sons, Inc., 2013: 67-82.
    [77] Talbert P B, Bryson T D, Henikoff S. Adaptive evolution of centromere proteins in plants and animals [J]. J Biol, 2004, 3(4): 18.
    [78] Luger K, Mader A W, Richmond R K, et al. Crystal structure of the nucleosome core particle at 2.8 Å resolution [J]. Nature, 1997, 389(6648): 251-260.
    [79] She C W, Song Y C. Advances in research of the structure and function of plant centromeres [J]. Hereditas, 2006, 28(12): 1597-1606. 佘朝文, 宋运淳. 植物着丝粒结构和功能的研究进展 [J]. 遗 传, 2006, 28(12): 1597-1606.
    [80] Ugarković D, Plohl M. Variation in satellite DNA profiles: Causes and effects [J]. EMBO J, 2002, 21(22): 5955-5959.
    [81] Yi C D, Gu M H. Advances in research of plant centromere [J]. J Yangzhou Univ (Agri Life Sci), 2007, 28(1): 39-44. 裔传灯, 顾铭洪. 植物着丝粒的研究进展 [J]. 扬州大学学报: 农业与生命科学版, 2007, 28(1): 39-44.
    [82] Voullaire L E, Slater H R, Petrovic V, et al. A functional marker centromere with no detectable alphasatellite, satellite III, or CENP-B protein: activation of a latent centromere [J]. Amer J Hum Genet, 1993, 52(6): 1153-1163.
    [83] Topp C N, Okagaki R J, Melo J R, et al. Identification of a maize neocentromere in an oat-maize addition line [J]. Cytogenet Genome Res, 2009, 124(3-4): 228-238.
    [84] Nasuda S, Hudakova S, Schubert I, et al. Stable barley chromosomes without centromeric repeats [J]. Proc Nat Acad Sci USA, 2005, 102(28): 9842-9847.
    [85] Han Y H, Zhang Z H, Liu C X, et al. Centromere repositioning in Cucurbit species: Implication of the genomic impact from centromere activation and inactivation [J]. Proc Natl Acad Sci USA, 2009, 106(35): 14937-14941.
    [86] Marshall O J, Chueh A C, Wong L H, et al. Neocentromeres: New insights into centromere structure, disease development, and karyotype evolution [J]. Amer J Hum Genet, 2008, 82(2): 261-282.
    [87] Zhang W L, Friebe B, Gill B S, et al. Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres [J]. Chromosoma, 2010, 119(5): 553-563.
    [88] Ding G, Yao N, Wu Q, et al. Research progress on the structure and function of centromeres [J]. Chin Bull Bot, 2008, 25(2): 149-160. 丁戈, 姚南, 吴琼, 等. 着丝粒结构与功能研究的新进展 [J]. 植 物学通报, 2008, 25(2): 149-160.
    [89] Jiang J M. Centromere evolution [C]//Jiang J M, Birchler J A. Plant Centromere Biology. Iowa: John Wiley & Sons, Inc., 2013: 159-169.
    [90] Hall S E, Kettler G, Preuss D. Centromere satellites from Arabidopsis populations maintenance of conserved and variable domains [J]. Genome Res, 2003, 13(2): 195-205.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘青.植物着丝粒结构及进化的研究进展[J].热带亚热带植物学报,2015,23(5):576~586

Copy
Share
Article Metrics
  • Abstract:2171
  • PDF: 4261
  • HTML: 0
  • Cited by: 0
History
  • Received:November 19,2014
  • Revised:April 28,2015
  • Adopted:May 05,2015
  • Online: October 14,2015
Article QR Code