不同海拔温度和降水对新疆阿尔泰山西伯利亚落 叶松径向生长的影响

周鹏 1.2, 黄建国 1*, 梁寒雪 1, 黎敬业 1.2

(1. 中国科学院华南植物园, 广东省应用植物学重点实验室, 退化生态系统植被恢复与管理重点实验室, 广州 510650; 2. 中国科学院大学, 北京 100049)

摘要:为定量并分离关键气候因子对新疆阿尔泰山不同海拔树木径向生长的影响,通过对高、中和低海拔的西伯利亚落叶松 (*Larix sibirica*)树轮宽度标准年表与气候因子分别进行相关、多元线性回归等统计分析,并进一步计算了线性模型中不同气 候因素的绝对和相对贡献率。结果表明,高海拔地区,当年6月温度和上年7月降水分别与径向生长呈显著正相关和负相关,两者共同解释西伯利亚落叶松径向生长变异的 33.1%,相对贡献率分别为 66.2%和 33.8%;中海拔地区,当年 6 月温度和上年6 月降水分别与径向生长呈显著正相关和负相关,两者共同解释径向生长变异的 26.8%,相对贡献率分别为 40.1%和 59.9%;低海拔地区,上年 6 月温度和 7 月降水分别与径向生长呈显著负相关和正相关,两者共同解释径向生长变异的 29.4%,相对贡献率分别为 31.9%和 68.1%。这表明限制树木径向生长的主要影响因子随海拔的不同而异,在高海拔地区,温度是主要限制因子;而在低海拔地区,降雨是主要限制因子。

关键词:西伯利亚落叶松;新疆阿尔泰山;温度;降水;树木年轮;海拔梯度 doi:10.11926/jtsb.4042

Effect of Temperature and Precipitation on Radial Growth of *Larix sibirica* along Altitudinal Gradient on Altay Mountains, Xinjiang, China

ZHOU Peng^{1,2}, HUANG Jian-guo^{1*}, LIANG Han-xue¹, LI Jing-ye^{1,2}

(1. Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: In order to quantify and separate the effects of key climatic factors on the radial growth at different altitudes in Altay Mountains of Xinjiang, China, the correlation analysis and multivariate linear regression analysis between the standard chronologies of Siberian larch (*Larix sibirica*), at high-, mid- and low-altitude stands, and climate factors were studied. The absolute and relative importance of different climate factors in the linear model were further calculated. The results showed that the radial growth of trees were significantly correlated with the current-June temperature (positive) and last-July precipitation (negative) at high altitude, which explain 33.1% of the total variance in tree radial growth and the relative contribution rate was 66.2% and 33.8%, respectively. The radial growth of trees were significantly correlated with the current-June temperature (positive) at mid-altitude, which explain 26.8% of the total variance in tree radial growth and 59.9%, respectively. The radial growth of trees

作者简介:周鹏(1994~),男,硕士研究生,研究方向为森林生态学。E-mail: zhoupeng16@scbg.ac.cn

收稿日期: 2019–01–07 **接受日期:** 2019–04–07

基金项目:国家自然科学基金项目(41861124001);中国科学院国际合作项目(GJHZ1752);中国科学院百人计划资助

This work was supported by the National Natural Science Foundation of China (Grant No. 41861124001), the International Collaborative Key Project of Chinese Academy of Sciences (Grant No. GJHZ1752), and the 100 Talents Program of Chinese Academy of Sciences.

^{*} 通信作者 Corresponding author. E-mail: huangjg@scbg.ac.cn

were significantly correlated with the last-June temperature (negative) and last-July precipitation (positive) at low altitude, which explain 29.4% of the total variance in tree radial growth and the relative contribution rate was 31.9% and 68.1%, respectively. So, it was suggested that the main climatic factors affecting the radial growth in Altay Mountains varies with altitude. The temperature and precipitation were the main limiting factors at high and low altitude, respectively.

Key words: Larix sibirica; Altay Mountains; Temperature; Precipitation; Tree ring; Altitudinal gradient

1880-2012 年全球平均温度以 0.85 ℃ (100 a)-1 的速度上升,预计升温还将持续[1-2]。全球变暖已经 成为社会普遍关注的热点问题,不仅会引起各种极 端事件的发生,如干旱、虫灾和火灾等[3-5],也会对 森林生态系统结构和功能产生影响[6]。树木作为森 林生态系统重要组成部分,通过理解树木生长与气 候的相关关系,有助于评估和预测全球变暖对森林 生态系统的影响。由于树木年轮资料具有定年准 确,分辨率高等特点,已经被广泛用来重建历史气 候和理解树木径向生长与气候间关系[7-9]。在全球 变暖背景下,树木的径向生长与气候的关系已经发 生改变[10-11],对阿拉斯加高山林线和天山东部的研 究表明,近年来树木径向生长对温度的敏感性逐渐 降低[12-13]。为了进一步评估和预测全球变暖对树木 径向生长的影响,已有许多研究通过空间代替时 间,沿海拔梯度比较树木径向生长与气候的关系[14-15]。 祁连山高海拔的祁连圆柏(Juniperus przewalskii)径 向生长与当年6月的温度呈显著的正相关,而低海 拔的树木径向生长与温度呈负相关,与降水呈正相 关[16]。但长白山高海拔的树木径向生长受到温度和 降水共同影响,且降水的作用大于温度[17];青藏高 原东北部,高海拔和低海拔祁连圆柏的径向生长都 受到晚春和早夏低降水的限制[18]。因此,通过海拔 梯度的研究,可以更好地理解全球变暖对树木径向 生长的影响。

阿尔泰山位于新疆北部,是中亚主要山系之 一,其山体呈西北-东南走向,与我国、蒙古、俄罗 斯和哈萨克斯坦相接,发育了新疆境内唯一一条外 流河额尔齐斯河和一条内流河乌伦古河。阿尔泰山 是一带一路沿线地区,处于对气候变化敏感的中高 纬度,因此具有重要而特殊的生态地位。大量基于 树轮的研究,包括树轮碳同位素、树轮重建历史气 候和树轮与气候的响应关系等在此展开^[19],陈拓利 用树轮碳同位素建立阿勒泰地区450 a的年表^[20]。 张同文运用树轮重建了阿勒泰西部365年5-9月的 平均气温^[21]。尚华明探究了阿尔泰山西伯利亚落叶

松(Larix sibirica)径向生长与温度和降水的响应关 系^[22]。此外,还研究了气候因子对高、低海拔树木 径向生长的影响,高海拔地区西伯利亚落叶松与当 年6月的平均气温存在显著的正相关关系[19,23];低 海拔地区西伯利亚落叶松径向生长与1月的降水呈 显著的正相关^[23-24];低海拔地区西伯利亚云杉(Picea obovata)径向生长受到春季降水的限制[25-26]。但是, 目前主要是对温度和降水等气候因子与径向生长 的关系使用相关分析方法进行定性研究,缺乏考 虑多个气候因子对径向生长的共同影响,以及探 究多因子与径向生长的关系沿海拔梯度变化的定 量研究。通过定量和分离多个气候因子与径向生 长的关系有助于我们准确理解各气候因子与径向 生长间的关系及其沿海拔梯度如何变化,从而为 森林生态系统应对气候变暖提供理论支撑,优化 生态安全屏障体系,更好地服务于"一带一路"国 家绿色发展。

本研究中,我们以新疆阿尔泰山优势树种西伯 利亚落叶松为对象,建立了高、中和低海拔3个树 轮宽度年表,探讨高、中和低海拔限制西伯利亚落 叶松生长的气候因子是什么;定量并分离不同海拔 各气象因子对西伯利亚落叶松径向生长的绝对贡 献率和相对贡献率。由于西伯利亚落叶松对气候变 化敏感^[27],而沿海拔梯度水热条件不一致,因此, 我们假设西伯利亚落叶松的径向生长与气候的关 系随着海拔的变化而变化,高海拔地区主要受温度 的限制,温度对径向生长贡献率高;低海拔地区主 要受降水的限制,降水对径向生长贡献率高。

1 材料和方法

1.1 研究区概况

研究区位于阿尔泰山南坡的新疆阿勒泰地区 (88.1 ~88.3 °E,47.9 ~48.1 °N),海拔1000~3000 m, 从低海拔到高海拔地区,植被类型依次为灌木草 原、森林草原带、高山-亚高山草甸草原、苔藓类 垫状植物。我国独有的泰加林带位于该林区,西伯利亚落叶松(Larix sibirica)是林区的优势树种,伴生种有西伯利亚云杉、西伯利亚冷杉(Abies sibirica)等^[28]。山区土壤类型呈明显垂直带状变化,从低到高分别为棕钙土、栗钙土、黑钙土、灰色森林土、生草灰化土、亚高山草甸土、高山草甸土和冰沼土等。阿尔泰山位于亚洲大陆腹部,为典型大陆性寒温带气候^[24]。山区降水主要由西风环流带来大西洋水汽受迫抬升造成,降水量随海拔增加而递增,低海拔降水量为200mm左右,高海拔降水量在600mm以上;气温随海拔增加而递减,气候呈显著的垂直梯度变化,冬季严寒漫长,夏季炎热短促,春秋不明显。

1.2 气象资料

本文使用荷兰皇家气象研究协会(KNMI) (https://climexp.knmi.nl/) CRU 4.01 月值降水(P)和平 均温度(T)格点数据(88.25°E, 47.75°~48.25°N,分 辨率为 0.5°×0.5°, 1962-2016年)。该格点的年降 水量为 235 mm,年平均温度为-1.1℃。从图 1 可见, 降水量和平均温度最高都在 7 月,分别为 42.5 mm 和 15.7℃,2 月的降水量最少,为 7.3 mm,1 月的 平均温度最低,为-20.4℃。

1.3 野外采样和树轮数据

在 2017 年 7 月和 2018 年 5 月,我们在阿尔泰 山中段南坡的阿勒泰市沿海拔 1163、1841、2161 m 各选取了1个西伯利亚落叶松样方(图2)。每个样方 选取西伯利亚落叶松约 20 棵,每棵树在胸径 1.3 m 处,使用 5.1 mm 口径生长锥采集 1 到 2 个树芯。3 个样方总共选取 64 棵树采集了 129 个树芯(表 1)。 在实验室,将采集到的样芯固定到带槽的木条上, 干燥后用从粗到细的砂纸打磨样品,直到样芯表面 光滑。利用双筒光学显微镜,对样品进行目视定年、 年代标记,使用轮宽测量系统(Velmex Measuring System)进行轮宽测量(0.001 mm 的精度)。借助 COFECHA 程序^[29],对轮宽序列定年结果进行检测 并修正。随后,利用 WIN-ARSTAN 程序^[30]研制年 表,去趋势方法采用 60 年的固定样条函数,公共 区间分析设定为1950-2016年。最终得到3种类型 的去趋势年表,包括标准化年表(STD)、残差年表 (RES)和自回归年表(ARS)。本文采用的是标准化年 表,保留了树轮中的低频信号。

Fig. 1 Monthly precipitation (P) and average temperature (T) in Altai from 1962 to 2016

1.4 数据分析

采用"treeclim"^[31]包做 Bootstrapped (重采样)相 关分析,重采样次数为1000次,分别设置0.05和 0.01 的显著水平,计算西伯利亚落叶松标准化树轮 宽度年表与上年6月到当年9月逐月的降水和平均 温度相关系数,确定上年生长季开始到当年生长季 结束, 西伯利亚落叶松的径向生长与气候因子间的 相关关系。为了量化温度和降水等气候因子对径向 生长变异,将每个样点相关系数最高月份的温度、 降水放入多元线性回归方程中进行分析,构建出高 海拔、中海拔和低海拔的多元回归模型: $y=\beta_0+\beta_1x_1+$ $\beta_2 x_2 + \varepsilon$,式中,y表示的标准化树轮宽度指数, x_1 和 x2 分别代表与年表相关最显著月份的温度和降水量, β_0 为截距, β_1 和 β_2 分别为温度、降水的回归系数, ε 为随机误差。为了进一步定量温度和降水对径向生长 贡献率,对多元线性回归模型中的各气象因子使用 "relaimpo"^[32]包计算绝对贡献率(温度和降水的贡献 率总和为 R²,可以实际反映各因子对径向生长的解释 量)和相对贡献率(温度和降水的贡献率总和为100%, 可以反映因子间的重要性大小),确定温度和降水在 不同海拔上的绝对贡献率,以及各样方温度和降水的 相对贡献率。统计分析软件采用 R 语言 3.4.1 版本。

2 结果和分析

2.1 年表特征

从高海拔到低海拔,采样点的年表长度分别为

图 2 采样点分布。WQA: 高海拔; WQB: 中海拔; WQC: 低海拔。以下图表同。

表1 采样点信息

Table 1 Plot information

采样点 Plot	经度 Longitude (E)	纬度 Latitude (N)	海拔 Altitude (m)	坡向 Aspect	坡度 Slope(%	样树 Sample tree	样芯 Sample core
WQA	88°20′01.10″	47°59′50.28″	2 161	Ν	25	23	46
WQB	88°18′24.87″	48°00′22.92″	1 841	Ν	15	20	40
WQC	88°06′21.16″	47°57′01.41″	1 163	Ν	25	21	43

155、70 和 165 a, 这 3 个标准年表的总体代表性都 达到 0.96 以上,表明年表序列对总体的代表性高, 共性强。高海拔样点年表序列间的相关性为 0.553, 中海拔为 0.46,低海拔为 0.703,序列间相关性越 高表明树受到的共同限制越强。3 个样点年表的平 均敏感性在 0.165 以上,表明树的径向生长对环境 变化敏感。这 3 个年表的一阶自相关系数均大于 0.42,反映该地当年径向生长会明显地受到上一年 径向生长的影响(表 2 和图 3)。

2.2 相关分析

从高海拔到低海拔,采样点西伯利亚落叶松的 径向生长受到温度和降水不一致的影响(图 4)。在高 海拔和中海拔地区,这两个样点年表均与当年生长 季温度呈现正相关关系,其中均与 6 月份的温度关 系最强,达到极显著水平(P<0.01);这两个样点年表 均与上年生长季的降水呈现负相关关系,其中与高 海拔上年 7 月和中海拔上年 6 月的降水关系最强, 达到极显著水平(P<0.01)。而在低海拔地区,该样

表2 标准年表参数特征(公共区间: 1950-2016年)

Table 2 Characteristic of standard chronologies with the common period from 1950 to 2016

采样点 Plot	序列长度 Chronology length	总体代表性 Expressed population signal	信噪比 Signal-to-noise ratio	平均相关系数 Mean correlation coefficient	平均敏感度 Mean sensitivity	一阶自相关 First-order autocorrelation
WQA	155	0.981	50.638	0.553	0.201	0.538
WQB	70	0.960	23.884	0.460	0.165	0.421
WQC	165	0.986	71.180	0.703	0.310	0.611

Fig. 2 Distribution of sample plots. WQA: High-altitude; WQB: Mid-altitude; WQC: Low-altitude. The same is following Tables and Figures.

图 5 阿小泰山四伯利亚洛叶松称他树花见及牛衣

Fig. 3 Standard chronologies of Siberian larch in Altay Mountains

点年表与上年生长季温度的关系呈现负相关关系, 其中与上年6月温度关系最强,达到极显著水平(P< 0.01);该样点年表与上年生长季降水呈正相关关 系。其中与上年7月降水关系最强,达到极显著水 平(P<0.01)。

2.3 多元线性回归

阿尔泰山西伯利亚落叶松径向生长与温度和 降水的多元线性回归的结果表明(表 3),高海拔地 区,当年6月的温度和上年7月的降水共解释西伯 利亚落叶松的径向生长变异的 33.1%;中海拔地区, 当年6月的温度和上年6月的降水共解释 26.8%; 低海拔地区,上年6月的温度和上年7月的降水共 解释 29.4%。

2.4 温度和降水的相对贡献率和绝对贡献率

通过计算不同海拔多元回归模型中不同气候 变量的绝对贡献率(图 5)。结果表明,温度的绝对贡 献率在高海拔样点为 21.9%,中海拔样点为 10.7%, 低海拔样点为 9.4%。降水的绝对贡献率在高海拔样 点为11.2%,中海拔样点为16.1%,低海拔样点为20%。

不同海拔多元回归模型中不同气候变量的相 对贡献率(图 6),高海拔采样点当年 6 月温度和上年 7 月降水的贡献率分别为 66.2%和 33.8%,温度的相 对贡献率比降水的高 32.4%。中海拔采样点当年 6 月的温度和上年 6 月降水的贡献率分别为 40.1%和 59.9%,温度的相对贡献率比降水的低 19.8%。低海 拔采样点上年 6 月的温度和上年 7 月的降水贡献率 分别为 31.9%和 68.1%,温度的相对贡献率比降水 的低 36.2%。

总体而言,从低海拔到高海拔地区,降水对树 木径向生长的影响逐渐减少,温度对径向生长的影 响不断增加。

3 讨论和结论

3.1 径向生长和气候的相关性

通过对 1963 年到 2016 年西伯利亚落叶松的径 向生长与上年生长季开始到当年生长季结束(上年

图 4 西伯利亚落叶松标准年表与气候因子相关热图。*: P<0.05; **: P<0.01; p: 上年。下表同。

Fig. 4 Heat map of correlation between standardized chronology of Siberian larch and climate factors. *: P < 0.05; **: P < 0.01; p: Last year. The same is following Table.

采样点 Plot	气候变量 Climate variable	月份 Month	斜率 Slope	t	Р	R^2	
WQA	Т	6	0.089	3.708	**	0.331	
	Р	p7	-0.003	-2.409	*		
WQB	Т	6	0.047	2.492	*	0.268	
	Р	рб	-0.004	-3.144	**		
WQC	Т	рб	-0.090	-2.390	*	0.294	
	Р	p7	0.007	3.649	**		

	表 3	温度和降水对生长的多元回归参数统计	t
--	-----	-------------------	---

Table 3 Estimates of the multiple linear model for the effect of precipitation and temperature on the radial growth

6月到当年9月)逐月温度和降水等气候因子做相关 分析表明,高、低海拔的树木径向生长不同程度地 受到温度和降水影响。高海拔和中海拔地区样点的 西伯利亚落叶松径向生长与当年6月温度相关关系 最显著,呈正相关。6月份西伯利亚落叶松生长进 入旺盛时期,一方面,较高的温度能够增加树木的 光合速率和加速形成层活动^[14,33-34],从而有利于形 成较宽的年轮;另一方面生长季较高的温度能够延 长生长季的长度,从而形成宽轮^[35-36]。这与阿尔泰 山西伯利亚落叶松晚材密度和树轮宽度的研究结 果一致^[37]。上年的气候条件影响下一年树的生长, 这种现象被称为滞后效应^[7,30],3个采样点高的一 阶自相关系数可以反映这一点。上年生长季降水与 这两个地方树木生长呈负相关,这可能有两种解 释,一是在水分充足的高海拔地区,较高降水量会 增加土壤水分含量,从而抑制西伯利亚落叶松根系 呼吸,不利于西伯利亚落叶松径向生长^[38];二是 冷空气带来的降水会使气温下降,从而降低树的光 合速率,减少碳水化合物积累进而影响来年树的生 长^[22,23,37],这与径向生长与生长季温度相关的结果

图 5 温度和降水对径向生长的绝对贡献率

Fig. 5 Absolute contribution rate of temperature and precipitation

图 6 温度和降水对树木径向生长的相对贡献率

Fig. 6 Relative contribution rate of temperature and precipitation

一致。

低海拔样点,上年6月的温度与西伯利亚落叶 松径向生长呈显著负相关关系,说明生长季高温抑 制低海拔树木生长。高温会导致土壤水分蒸发和植 物蒸腾加快,造成土壤水分的亏缺和植物失水,从 而影响树木碳水化合物的合成导致下一年的径向 生长下降^[7,39],这与低海拔径向生长与降水呈正相 关的结果一致。上年7月的降水与样点树木径向生 长呈显著正相关关系。在水分亏缺的环境中,树木 叶片气孔关闭以减弱蒸腾作用,降低 CO₂的扩散,导致光合速率下降,不利于碳水化合物的合成^[40],因此较多的降水将有助于缓解土壤水分亏缺,增加 植物的光合速率,有利于碳水化合物的合成与积 累,从而促进来年树的生长^[39,41]。这与上年7月降 水促进该区域低海拔西伯利亚落叶松当年径向生 长的报道一致^[42]。

3.2 温度和降水的绝对贡献率

为了阐明潜在的径向生长对气候因子的敏感 性在海拔梯度上变化的机制,我们定量探究了温 度和降水与径向生长的关系在不同海拔上的变化 趋势。温度的绝对贡献率随海拔的上升而上升, 高海拔样方的绝对贡献率比中海拔高11.2%,比低 海拔高 12.5%。这表明阿尔泰山高海拔地区西伯利 亚落叶松径向生长受温度的制约比低海拔地区 强,这与胡建等[24]报道的西伯利亚落叶松径向生 长沿海拔梯度变化的结果一致。根据海拔每升高 100 m 气温下降 0.6℃, 在我们的研究区低海拔与高 海拔相差1000 m 左右,高海拔气温比低海拔气温 要低6℃。由于高海拔地区比低海拔地区的树木径 向生长更易受到低温的抑制,在气温偏低的环境 中,较高的温度有助于植物的光合速率加快从而合 成更多的碳水化合物,促进径向生长[37]。由于高海 拔气温较低,该地树木的径向生长对温度更敏感, 也更受益于生长季较高的温度。

降水的绝对贡献率随海拔的上升而下降,低海 拔样方的绝对贡献率比中海拔高 3.9%,比高海拔高 8.8%。表明阿尔泰山低海拔地区树木生长受降水限 制比高海拔地区强,这与该区域降水对西伯利亚落 叶松径向生长沿海拔梯度的研究结果一致^[24]。根据 此前该地区研究,海拔每升高 100 m 年降水增加 28 mm^[43],在我们的研究区低海拔与高海拔相差 1 000 m 左右,低海拔降水比高海拔降水少 280 mm。 在这个干旱少雨的环境中,较多的降水能够有效缓 解土壤水分亏缺,补充土壤水量,促进径向生长^[41]。 因此,在干旱缺水的低海拔地区,径向生长更敏感 也更受益于生长季较多的降水。

3.3 温度和降水的相对贡献率

温度和降水对径向生长相对贡献率的结果表 明,不同海拔的西伯利亚落叶松径向生长受到温度 和降水的影响不一致。高海拔采样点接近林线,降 水丰富,且生长季前后的融雪能大量补充该地区的 土壤水分[22,43]; 该地海拔高,温度较低。较低的温 度导致该采样点光合速率降低,严重影响西伯利亚 落叶松径向生长。根据限制因子定律,由于该地水 分充足,树木生长主要受到温度的影响,温度的相 对贡献率比降水的高,这一结果与该区域树轮宽度 和树轮密度的研究结果一致[37]。低海拔采样点温度 较高,降水少,在干旱区,降水偏少导致该采样点 的土壤严重缺水,影响植物的径向生长。根据限制 因子定律,低海拔树生长主要受到降水的影响,降 水的相对贡献率高于温度的。这一结果与阿尔泰山 低海拔地区降水对西伯利亚云杉影响的研究结果 一致[25]。位于高海拔和低海拔采样点之间的中海拔 采样点,由于该地温度比高海拔样点高,比低海拔 样点低,较适宜的温度有利于西伯利亚落叶松的径 向生长,对径向生长限制较小;但该地的降水可能 较多,导致树的径向生长受到降水影响较大。根据 限制因子定律,由于该温度较为适宜,树生长主要 受到较多降水的影响,降水的相对贡献率比温度的 相对贡献率高。

阿尔泰山不同海拔西伯利亚落叶松径向生长 分别受到温度和降水的影响。高海拔西伯利利亚 落叶松主要受到温度的影响,受降水的影响相对 较小。而低海拔西伯利亚落叶松主要受到降水的 影响,受温度的影响相对较小。中海拔西伯利亚 落叶松受温度和降水的影响介于高海拔和低海拔 之间。沿海拔梯度定量并分离树木径向生长与温 度和降水的关系,有助于准确揭示气候因子对径 向生长的影响,从而有利于评估和预测树的生长 和森林动态,进而为阿尔泰山的森林经营与管理 提供科学依据。

参考文献

 ZHAO Z C, LUO Y, HUANG J B. Review IPCC 30 years (1988–2018)
 [J]. Climate Change Res, 2018, 14(5): 540–546. doi: 10.12006/j.issn. 1673–1719.2018.062.

赵宗慈, 罗勇, 黄建斌. 回顾 IPCC 30 年(1988-2018) [J]. 气候变化 研究进展, 2018, 14(5): 540-546. doi: 10.12006/j.issn.1673-1719. 2018.062.

[2] IPCC. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013: 1535.

- [3] CHEN L, HUANG J G, DAWSON A, et al. Contributions of insects and droughts to growth decline of trembling aspen mixed boreal forest of western Canada [J]. Glob Change Biol, 2018, 24(2): 655–667. doi: 10.1111/gcb.13855.
- [4] CHEN L, HUANG J G, ALAM S A, et al. Drought causes reduced growth of trembling aspen in western Canada [J]. Glob Change Biol, 2017, 23(7): 2887–2902. doi: 10.1111/gcb.13595.
- [5] FLANNIGAN M D, AMIRO B D, LOGAN K A, et al. Forest fires and climate change in the 21st century [J]. Mitig Adapt Strat Glob Change, 2006, 11(4): 847–859. doi: 10.1007/s11027-005-9020-7.
- [6] WEBER M G, FLANNIGAN M D. Canadian boreal forest ecosystem structure and function in a changing climate: impact on fire regimes [J]. Environ Rev, 1997, 5(3/4): 145–166. doi: 10.1139/a97-008.
- [7] HUANG J G, TARDIF J C, BERGERON Y, et al. Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest [J]. Glob Change Biol, 2010, 16(2): 711–731. doi: 10.1111/j.1365-2486.2009.01990.x.
- [8] ESPER J, COOK E R, SCHWEINGRUBER F H. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability [J]. Science, 2002, 295(5563): 2250–2253.
- [9] SHAO X M. Advancements in dendrochronology [J]. Quaternary Sci, 1997(3): 265–271.
 邵雪梅. 树轮年代学的若干进展 [J]. 第四纪研究, 1997(3): 265–

271. [10] JACOBY G C, D'ARRIGO R D. Tree ring width and density evidence

- of climatic and potential forest change in Alaska [J]. Glob Biogeochem Cycles, 1995, 9(2): 227–234. doi: 10.1029/95GB00321.
- [11] D'ARRIGO R D, JACOBY G C, FREE R M. Tree-ring width and maximum latewood density at the north American tree line: Parameters of climatic change [J]. Can J For Res, 1992, 22(9): 1290–1296. doi: 10. 1139/x92-171.
- [12] WILMKING M, JUDAY G P. Longitudinal variation of radial growth at alaska's northern treeline: Recent changes and possible scenarios for the 21st century [J]. Glob Planet Change, 2005, 47(2/3/4): 282–300. doi: 10.1016/j.gloplacha.2004.10.017.
- [13] JIAO L, JIANG Y, ZHANG W T, et al. Divergent responses to climate factors in the radial growth of *Larix sibirica* in the eastern Tianshan Mountains, northwest China [J]. Trees, 2015, 29(6): 1673–1686. doi: 10.1007/s00468-015-1248-6.
- [14] LIANG E Y, WANG Y F, XU Y, et al. Growth variation in *Abies georgei* var. *smithii* along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau [J]. Trees, 2010, 24(2): 363–373. doi: 10. 1007/s00468-009-0406-0.

- [15] BUCKLEY B M, COOK E R, PETERSON M J, et al. A changing temperature response with elevation for *Lagarostrobos franklinii* in Tasmania, Australia [J]. Climatic Change, 1997, 36(3/4): 477–498. doi: 10.1023/A:1005322332230.
- [16] GAO L L, GOU X H, DENG Y, et al. Assessing the influences of tree species, elevation and climate on tree-ring growth in the Qilian Mountains of northwest China [J]. Trees, 2017, 31(2): 393–404. doi: 10.1007/s00468-015-1294-0.
- [17] YU D P, WANG G G, DAI L M, et al. Dendroclimatic analysis of *Betula ermanii* forests at their upper limit of distribution in Changbai Mountain, northeast China [J]. For Ecol Manage, 2007, 240(1/2/3): 105–113. doi: 10.1016/j.foreco.2006.12.014.
- [18] LIU L S, SHAO X M, LIANG E Y. Climate signals from tree ring chronologies of the upper and lower treelines in the Dulan region of the northeastern Qinghai-Tibetan Plateau [J]. J Integr Plant Biol, 2006, 48(3): 278–285. doi: 10.1111/j.1744-7909.2006.00158.x.
- [19] JIANG S X, YUAN Y J, WEI W S, et al. Early summer temperature history in the altay mountains recorded by tree rings during 1579–2009
 [J]. J Desert Res, 2016, 36(4): 1126–1132. doi: 10.7522/j.issn.1000–694X.2015.00084.

姜盛夏, 袁玉江, 魏文寿, 等. 树轮记录的新疆阿尔泰山 1579-2009 年初夏温度变化 [J]. 中国沙漠, 2016, 36(4): 1126-1132. doi: 10. 7522/j.issn.1000-694X.2015.00084.

- [20] CHEN T, QIN D H, LIU X H, et al. Tree-ring δ¹³C records in the little ice age in Altay prefecture of Xinjiang region [J]. J Glaciol Geocryol, 2002, 24(1): 83–86. doi: 10.3969/j.issn.1000-0240.2002.01.014.
 陈拓,秦大河,刘晓宏,等. 新疆阿勒泰地区小冰期特征的树轮 δ¹³C 记录 [J]. 冰川冻土, 2002, 24(1): 83–86. doi: 10.3969/j.issn.1000-0240.2002.01.014
- [21] ZHANG T W, YUAN Y J, YU S L, et al. Development of two tree-ring width chronologies of the samples collected from the Baluntai region
 [J]. Arid Zone Res, 2008, 25(2): 288–294. doi: 10.13866/j.azr.2008.02. 008.

张同文, 袁玉江, 喻树龙, 等. 用树木年轮重建阿勒泰西部 5-9月 365 年来的月平均气温序列 [J]. 干旱区研究, 2008, 25(2): 288-294. doi: 10.13866/j.azr.2008.02.008.

[22] SHANG H M, WEI W S, YUAN Y J, et al. Response of tree ring width to recent climate change, south slope of Altai Mountains [J]. Acta Ecol Sin, 2010, 30(9): 2246–2253.

尚华明,魏文寿,袁玉江,等. 阿尔泰山南坡树轮宽度对气候变暖的响应 [J]. 生态学报,2010,30(9):2246-2253.

[23] ZHANG T W, WEI W S, YUAN Y J, et al. Analysis of the tree-ring chronological characteristics in the west of Altay [J]. J Desert Res, 2007, 27(6): 1040–1047.

张同文,魏文寿,袁玉江,等. 阿勒泰西部树轮年表特征分析 [J]. 中国沙漠,2007,27(6):1040–1047.

[24] HU J, YU S L, YUAN Y J, et al. Characteristics of tree-ring width chronologies in the central Altay Mountains and climate response [J]. Desert Oasis Meteor, 2014, 8(3): 19–26. doi: 10.3969/j.issn.1002-0799. 2014.03.003.

胡建,喻树龙,袁玉江,等. 阿尔泰山中部树轮宽度年表特征及其 气候响应分析 [J]. 沙漠与绿洲气象, 2014, 8(3): 19–26. doi: 10.3969/ j.issn.1002-0799.2014.03.003.

- [25] CHEN F, YUAN Y J, WEI W S, et al. Precipitation reconstruction for the southern Altay Mountains (China) from tree rings of siberian spruce, reveals recent wetting trend [J]. Dendrochronologia, 2014, 32 (3): 266–272. doi: 10.1016/j.dendro.2014.06.003.
- [26] NIU J Q, YUAN Y J, ZHANG T W, et al. Characteristics of tree-ring width chronologies in Altay and their response to climate change [J]. Desert Oasis Meteor, 2016, 10(1): 59–67. doi: 10.3969/j.issn.1002– 0799.2016.01.009.

牛军强, 袁玉江, 张同文, 等. 阿尔泰山区两种树轮宽度年表气候 响应特征 [J]. 沙漠与绿洲气象, 2016, 10(1): 59-67. doi: 10.3969/j. issn.1002-0799.2016.01.009.

[27] SHUMAN J K, SHUGART H H, O'HALLORAN T L. Sensitivity of siberian larch forests to climate change [J]. Glob Change Biol, 2011, 17(7): 2370–2384. doi: 10.1111/j.1365-2486.2011.02417.x.

[28] SHI Y J, SONG F H, KA D E, et al. Geography provenance division of *Larix sibirica* [J]. J NE For Univ, 2001, 29(5): 15–17. doi: 10.3969/j.issn. 1000–5382.2001.05.004.

史彦江, 宋锋惠, 卡得尔, 等. 新疆落叶松地理种源区划 [J]. 东北林业大学学报, 2001, 29(5): 15-17. doi: 10.3969/j.issn.1000-5382. 2001.05.004.

- [29] HOLMES R L. Computer-assisted quality control in tree-ring dating and measurement [J]. Tree Ring Bull, 1983, 43(3): 69–78.
- [30] YAMAGUCHI D K, COOK E R, KAIRIUKSTIS L A. Methods of dendrochronology, applications in the environmental sciences by Edward R. Cook, Leonardas A. Kairiukstis [J]. Arctic Alp Res, 1990, 23(1): 120. doi: 10.2307/1551446.
- [31] ZANG C, BIONDI F. Treeclim: An R package for the numerical calibration of proxy-climate relationships [J]. Ecography, 2015, 38(4): 431–436. doi: 10.1111/ecog.01335.
- [32] GRÖMPING U. Relative importance for linear regression in R: The package relaimpo [J]. J Stat Softw, 2006, 17(1): 1–27. doi: 10.18637/ jss.v017.i01.

[33] GRUBER A, WIESER G, OBERHUBER W. Intra-annual dynamics of

stem CO₂ efflux in relation to cambial activity and xylem development in *Pinus cembra* [J]. Tree Physiol, 2009, 29(5): 641–649. doi: 10.1093/ treephys/tpp001.

- [34] LI J B, SHI J F, ZHANG D D, et al. Moisture increase in response to high-altitude warming evidenced by tree-rings on the southeastern tibetan plateau [J]. Climate Dyn, 2017, 48(1/2): 649–660. doi: 10.1007/ s00382-016-3101-z.
- [35] DESLAURIERS A, MORIN H, URBINATI C, et al. Daily weather response of balsam fir [*Abies balsamea* (L.) Mill.] stem radius increment from dendrometer analysis in the boreal forests of Qu dbec (Canada) [J]. Trees, 2003, 17(6): 477–484. doi: 10.1007/s00468-003-0260-4.
- [36] GUO X L, YU B Y, LIANG H X, et al. Advancement in studies of tree growth and ecophysiology incorporating micro-sampling approach [J]. Chin J Plant Ecol, 2017, 41(7): 795–804. doi: 10.17521/cjpe.2017.0009.
 郭霞丽, 余碧云, 梁寒雪, 等. 结合微树芯方法的树木生长生理生态学研究进展 [J]. 植物生态学报, 2017, 41(7): 795–804. doi: 10.17521/cjpe.2017.0009.
- [37] CHEN F, YUAN Y J, WEI W S, et al. Climatic response of ring width and maximum latewood density of *Larix sibirica* in the Altay Mountains, reveals recent warming trends [J]. Ann Forest Sci, 2012, 69(6): 723–733. doi: 10.1007/s13595-012-0187-2.
- [38] PENG J F, GOU X H, CHEN F H, et al. The responses of growth ring width variations of *Larix sibirica* ledb to climatic change in eastern Tianshan Mountains [J]. Acta Ecol Sin, 2006, 26(8): 2723–2731. 彭剑峰, 勾晓华, 陈发虎, 等. 天山东部西伯利亚落叶松树轮生长

对气候要素的响应分析 [J]. 生态学报, 2006, 26(8): 2723-2731.

- [39] CHEN L, HUANG J G, STADT K J, et al. Drought explains variation in the radial growth of white spruce in Western Canada [J]. Agric For Meteor, 2017, 233: 133–142. doi: 10.1016/j.agrformet.2016.11.012.
- [40] CHAVES M M, FLEXAS J, PINHEIRO C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell [J]. Ann Bot, 2009, 103(4): 551–560. doi: 10.1093/aob/mcn125.
- [41] DESLAURIERS A, HUANG J G, BALDUCCI L, et al. The contribution of carbon and water in modulating wood formation in black spruce saplings [J]. Plant Physiol, 2016, 170(4): 2072–2084. doi: 10. 1104/pp.15.01525.
- [42] CHEN F, YUAN Y J, ZHANG T W, et al. Long-term drought severity variations in the northern Altay Mountains and its linkages to the Irtysh river streamflow variability [J]. J Arid Land Resour Environ, 2015, 29(8): 93–98. doi: 10.13448/j.cnki.jalre.2015.263.
 陈峰,袁玉江,张同文,等.树轮记录的阿尔泰山北部 PDSI 指数变 化及其对额尔齐斯河径流变化影响 [J]. 干旱区资源与环境, 2015, 29(8): 93–98. doi: 10.13448/j.cnki.jalre.2015.263.
- [43] SHEN Y P, WANG G Y, SU H C, et al. Hydrological processes responding to climate warming in the upper reaches of Kelan river basin with snow-dominated of the Altay Mountains region, Xinjiang, China [J]. J Glaciol Geocryol, 2007, 29(6): 845–854. doi: 10.3969/j.issn. 1000–0240.2007.06.001.

沈平, 王国亚, 苏宏超, 等. 新疆阿尔泰山区克兰河上游水文过程 对气候变暖的响应 [J]. 冰川冻土, 2007, 29(6): 845-854. doi: 10. 3969/j.issn.1000-0240.2007.06.001.