加勒比松种源苗期DNA甲基化多样性分析

李义良1,黄梓培2,赵奋成1*,郭文冰1,吴惠姗1,廖仿炎1

(1. 广东省森林培育与保护利用重点实验室, 广东省林业科学研究院, 广州 510520; 2. 广东药科大学, 广州 510006)

摘要:为了解加勒比松(*Pinus caribaea*)种源的遗传多样性,利用甲基化敏感扩增多态性技术对加勒比松 3 个变种 17 个种源的 DNA 甲基化多样性进行了研究。结果表明,56 对引物组合共扩增出 425 条谱带,其中多态性谱带 422 条,多态性百分率为 99.25%。加勒比松种源幼苗半甲基化比率比全甲基化比率稍高,洪都拉斯加勒比松、古巴加勒比松和巴哈马加勒比松的 DNA 甲基化率分别为 22.39%、22.29%和 22.35%,差异不显著。加勒比松的 DNA 序列遗传多样性(H=0.4376)高于 DNA 甲基化多样性(H=0.3274), Mantel 检验表明,基因组遗传变异与表观遗传变异不存在相关性(r=-0.171, P=0.16)。表观聚类与遗传聚类间存在较大差异,两种聚类分析结果均未将 3 个加勒比松变种分开。这表明加勒比松变种间的表观遗传变异极为丰富,能为加勒比松遗传改良提供优良种质资源。

关键词:加勒比松;种源;DNA 甲基化;表观多样性 doi: 10.11926/jtsb.3825

Analysis of DNA Methylation Diversity among Provenances of *Piuns* caribaea Morelet Seedlings

LI Yi-liang¹, HUANG Zi-pei², ZHAO Fen-cheng^{1*}, WU Hui-shan¹, GUO Wen-bing¹, LIAO Fan-yan¹ (1. *Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry*, Guangzhou 510520, China; 2. *Guangdong Pharmaceutical University*, Guangzhou 510006, China)

Abstract: In order to understand the genetic diversity of *Piuns caribaea* Morelet, the methylation diversity among 17 provenances to 3 varieties of *P. caribaea* was studied by using methylation sensitive amplification polymorphism (MSAP) technique. The results showed that a total of 425 bands were amplified by 56 pairs of primer combinations, 422 of them were polymorphic with a polymorphism rate of 99.25%. The major DNA methylation type in *P. caribaea* was hemi-methylation. The average methylation rate of *P. caribaea* var. *caribaea*, var. *hondurensis* and var. *bahmaensis* was 22.39%, 22.29% and 22.35%, respectively, which had no significant difference. The genetic diversity of DNA sequences (H=0.4376) was significantly higher than that of DNA methylation (H=0.3274). The Mantel test showed that there was no relation between genome genetic variation and methylation, although the two clustering results could not divided the three varieties of *P. caribaea*. So, it was suggested that *P. caribaea* had a high epigenetic diversity, which could provide excellent germplasm resources for genetic improvement of *P. caribaea*.

Key words: Pinus caribaea; Provenance; DNA methylation; Epigenetic diversity

基金项目:国家林业局 948 项目(2013-4-39)资助

作者简介:李义良(1979~),男,博士,高级工程师,研究方向为林木遗传育种。E-mail: yiliangli@sinogaf.cn

* 通信作者 Corresponding author. E-mail: zhaofc@sinogaf.cn

收稿日期: 2017-09-21 **接受日期**: 2017-11-27

This work was supported by the 948 Project of State Forestry Bureau (Grant No. 2013-4-39).

加勒比松(Pinus caribaea Morelet)分布于中美 洲,有3个变种,即古巴加勒比松(P. caribaea var. caribaea)、洪都拉斯加勒比松[P. caribaea var. hondurensis (Sén éclauze) W. H. Barrett & Golfari]和 巴哈马加勒比松[P. caribaea var. bahmaensis (Grisebach) W. H. Barrett & Golfari],是世界上重要的用 材、纸浆材和采脂树种,具有生长快,适应性强等 特点。3个加勒比松变种于20世纪60年代后期先 后引入我国,在我国两广南部及海南岛种植。在 我国加勒比松作为南方重要工业原料树种湿加松(P. elliottii × P. caribaea)的父本得到进一步改良,如何 有效利用加勒比松种质资源已成为树种改良及培 育良种的重要因素之一。

种质资源收集与保存是实现树种改良的前提, 种质资源间亲缘关系、遗传多样性是加快改良进 程、制定遗传改良策略的重要参考。表型、分子标 记、测序等技术是种质资源亲缘关系和多样性评价 的常用手段。通过表型性状研究加勒比松 3 个变种 的系统发育,发现变种间的亲缘关系与其地理分布 是相对一致^[1]。同工酶研究表明,古巴加勒比松和 巴哈马加勒比松自然群体具有高的基因多样性水 平(He=0.26)^[2]。SSR标记研究表明,巴哈马加勒比 松先与北部洪都拉斯加勒比松聚为一组,东南部洪 都拉斯加勒比松聚为一组,再与古巴加勒比松聚为 一组^[3]。RAPD标记聚类分析表明,巴哈马加勒比 松与湿地松存在较近的亲缘关系, 然后是古巴加勒 比松、洪都拉斯加勒比松^[4]。质体 DNA 测序表明, 洪都拉斯加勒比松与巴哈马加勒比松遗传关系较 近,与古巴加勒比松的亲缘关系相对较远^[5]。目前 加勒比松变种亲缘关系和多样性研究取得一些进 展,但从表观遗传方面开展加勒比松 DNA 甲基化 多样性的研究尚未涉及。

DNA 甲基化属于表观遗传学范畴,是真核细胞 基因组在复制和转录后最为常见的一种修饰方式, 对于生物生命活动起重要作用^[6]。目前普遍采用甲 基化敏感扩增多态性(methylation sensitive amplification polymorphism, MSAP)技术检测 DNA 甲基化, 进而开展多样性研究,该方法利用同裂酶 *Hpa*II/ *Msp*I 对识别序列 CCGG 的甲基化敏感性的不同, 能够识别的序列 CCGG 产生的甲基化状态就会导 致两者发生酶切和扩增,从而产生多态性,已在玉 米(Zea may)^[7]、菊花脑(Chrysanthemum nankingense)^[8]、陆地棉(Gossypium hirsutum)^[9]、樱桃 (Prunus avium)^[10]、苏铁(Cycas)^[11]等植物遗传多样 性、亲缘关系的研究上广泛应用。

本研究以 17 个加勒比松种源为研究对象,采用 MSAP 技术对基因组 DNA 甲基化多样性进行分析,了解加勒比松种源 DNA 甲基化多样性,为进一步利用加勒比松种源奠定基础。

1 材料和方法

1.1 试验材料

供试 17 个加勒比松种源材料见表 1,1~10 号 洪都拉斯加勒比松种源引自洪都拉斯,12 号洪都拉 斯加勒比松种源引自澳大利亚昆士兰种子园,18 号 洪都拉斯加勒比松种源引自巴西 Len çás Paulista 种 子园;11 号、17 号、41 号古巴加勒比松种源分别 引自古巴 Pinar del R ó 天然林、巴西 Len çás Paulista 种子园、墨西哥,13 号古巴加勒比松种源引自巴西 Len çás Paulista 种子园;上述各类种子园中,不同 变种间没有混合种植,其种子园中子代种子不存在 变种间杂交。2015 年 6 月种子播种于广东省林业科 学研究院中心苗圃,2016 年 4 月当苗龄 10 个月时 取成熟针叶用于试验。

1.2 方法

基因组 DNA 提取 采用 DNeasy Plant Mini Kit 试剂盒(QIAGEN), DNA 的完整性用 1%的琼脂 糖凝胶电泳进行检测,紫外吸收法检测基因组 DNA 的浓度及纯度。每个种源采集 15 株针叶提取 DNA, 等量 DNA 混合进行分析, -20℃保存备用。

DNA 甲基化的 MSAP 分析 采用优化的 MSAP 反应体系。分别用 *Eco*R I+*Hpa* II (Promega, 美国)和 *Eco*R I+*Msp* I (Promega, 美国)对杂交子代 及亲本基因组 DNA 进行酶切。随后用 T₄ DNA ligase (TaKaRa, 日本)进行连接,接头引物、预扩增引物、 选择性扩增引物序列见表 2。1 μ L 连接产物用于预 扩增引物,程序为:94°C30 s,65°C1 min,72°C1 min, 25 个循环。2 μ L 稀释 10 倍的预扩增产物用于降落 PCR 扩增,反应程序参考 Neha 等^[7]的方法。选择 性扩增产物经变性、分离后,8%聚丙烯酰胺凝胶 电泳 2.5 h (30 W),硝酸银染色干燥后读带。

表1 加勒比松种源

Table 1 Provenances of Piuns caribaea

编号	变种	产地	引进国	原产国	
No.	Variety	Location	Introduce	Origin	
1	洪都拉斯加勒比松 var. hondurensis	Tierra Blanca, S.B	洪都拉斯 Hondurensis	洪都拉斯 Hondurensis	
2	洪都拉斯加勒比松 var. hondurensis	Yoro	洪都拉斯 Hondurensis	洪都拉斯 Hondurensis	
3	洪都拉斯加勒比松 var. hondurensis	Valle de Siria, F. M	洪都拉斯 Hondurensis	洪都拉斯 Hondurensis	
4	洪都拉斯加勒比松 var. hondurensis	Santa Cruz de Yojoa	洪都拉斯 Hondurensis	洪都拉斯 Hondurensis	
5	洪都拉斯加勒比松 var. hondurensis	Brus Laguna	洪都拉斯 Hondurensis	洪都拉斯 Hondurensis	
6	洪都拉斯加勒比松 var. hondurensis	Dulce Nombre de Culmi, Olancho	洪都拉斯 Hondurensis	洪都拉斯 Hondurensis	
7	洪都拉斯加勒比松 var. hondurensis	La Brea	洪都拉斯 Hondurensis	洪都拉斯 Hondurensis	
8	洪都拉斯加勒比松 var. hondurensis	San Jeronimo, Comayagua	洪都拉斯 Hondurensis	洪都拉斯 Hondurensis	
9	洪都拉斯加勒比松 var. hondurensis	EL Venado	洪都拉斯 Hondurensis	洪都拉斯 Hondurensis	
10	洪都拉斯加勒比松 var. hondurensis	Ojo de Agua, Comayagoa	洪都拉斯 Hondurensis	洪都拉斯 Hondurensis	
12	洪都拉斯加勒比松 var. hondurensis	Queensland	澳大利亚 Australia	未知 Unknown	
18	洪都拉斯加勒比松 var. hondurensis	Len çóis Paulista	巴西 Brazil	危地马拉 Guatemala	
11	古巴加勒比松 var. caribaea	Pinar del R ó	古巴 Cuba	古巴 Cuba	
13	古巴加勒比松 var. caribaea	遂溪 Suixi	中国 China	古巴 Cuba	
17	古巴加勒比松 var. caribaea	Len çóis Paulista	巴西 Brazil	古巴 Cuba	
41	古巴加勒比松 var. caribaea	种子园 Seed orchard	墨西哥 Mexico	古巴 Cuba	
16	巴哈马加勒比松 var. bahmaensis	Len çóis Paulista	巴西 Brazil	巴哈马 Bahamas	

表 2 MSAP 引物序列

Table 2 Sequences of primers used for MSAP analysis

	EcoR I 接头和引物 (5'~3')	Hpa II / Msp I 接头和引物 (5'~3')
	EcoR I (E) adapter and primer	Hpa II /Msp I (H/M) adapter and primer
接头 1 Adapter1	CTCGTAGACTGCGTACC	GACGATGAGTCTAGAA
接头 2 Adapter2	CTGACGCATGGTTAA	CATCTCAGATCTTGC
预扩增引物 Preselective primer	GACTGCGTACCAATTC(E00)	GATGAGTCTAGAACGG(H/M00)
选择性扩增引物 Selective primer	E+AAG	H/M+TG
	ACA	CAA
	ACC	CAC
	ACG	CAT
	AGA	CTA
	AGC	CTC
	AGG	CTT
		TCA

1.3 数据分析

将所有扩增得到的 MSAP 条带转为二维矩阵, "1"、"0"分别代表条带的有、无。多态位点百分率 (PPL)、Nei's 基因多态性指数(H)、Shannon 信息指 数(I)等遗传多样性参数采用 Popgene V. 1.32 软件计 算。利用 2.10e 版 NTSYSpc 软件(Applied Biostatistics, 美国)进行聚类,并对 MSAP 分析进行 Mantel 检测。

2 结果和分析

2.1 加勒比松 DNA 甲基化差异

利用 56 对引物组合共扩增出 425 条谱带,平 均每对引物组合扩增 7.6 条谱带,E2-H6 引物扩增 条带最少,只有 3 条,E5-H6、E5-H8、E7-H1 引物 扩增的最多,有 13 条。多态性谱带 422 条,多态 性谱带百分率 99.25%,说明各种源间 DNA 甲基化 多态性位点非常丰富。

石奔^[12]将甲基化模式分为4类,I型为5'-CC-GG-3'胞嘧啶未甲基化和内侧胞嘧啶未甲基化(1,1);II型为5'-CCGG-3'外侧胞嘧啶半甲基化(1,0);III型为5'-CCGG-3'内例侧胞嘧啶全甲基化(0,0)(可能)。由于IV型为不确定类型,不作计算。从表3可见,12个洪都拉斯加勒比松种源中II型甲基化率(11.74%)高于III型(10.65%),除1、2、8号种源的II型甲基 化率低于III型的外,其余种源均高于III型;3号种源的II型甲基化率(13.88%)较高,而2号种源的II型甲基化率(13.18%)最高。4个古巴加勒比松种 源中 11、13 号种源的 II 型甲基化率低于 III 型,17、 41 号种源的 II 型甲基化率高于 III 型;13 号种源的 II 型(13.41%)、III型甲基化率(18.59%)均最高。巴 哈马加勒比松 16 号种源的 II 型甲基化率为11.76%, III 型甲基化率为 10.59%,II 型甲基化率高于 III 型。 DNA 全甲基化率(III 型)最小的是洪都拉斯加勒比松 10 号种源(7.28%),最大的是古巴加勒比松 13 号种源 (18.59%);DNA 半甲基化率(II 型)为 6.59%~15.29%。 17 个种源间不同模式的甲基化率存在一定差异。

从变种来看,洪都拉斯加勒比松种源、巴哈马 加勒比松种源的 II 型甲基化率(分别为 11.74% 和 11.76%)高于 III 型的(分别为 10.65% 和 10.59%),古 巴加勒比松种源的相反, III 型的甲基化率(11.82%) 高于 II 型的(10.47%)。洪都拉斯加勒比松种源与巴 哈马加勒比松种源的 II 型和 III 型甲基化率相近, 他 们的 II 型甲基化率均高于古巴加勒比松种源的, 而 III 型甲基化率则低于古巴加勒比松种源。III 型甲 基化率以古巴加勒比松种源>洪都拉斯加勒比松种 源>巴哈马加勒比松种源, II 型甲基化率以巴哈马 加勒比松种源>洪都拉斯加勒比松种源>古巴加勒 比松种源。加勒比松的 DNA 总甲基化水平相对较 低,其中洪都拉斯加勒比松种源为 18.78%~27.53%, 古巴加勒比松种源为 17.41%~32%, 巴哈马加勒比 松种源种源为 22.35%。

表 3 加勒比松种源 CCGG 位点的胞嘧啶甲基化水平

Table 3 Cytosine methylation levels of CCGG locus among provenances of Piuns caribaea

和酒	总带数	I		II		III		II+ III	
Provenance	Total of bands	数量 Number	%	数量 Number	%	数量 Number	%	数量 Number	%
1	425	173	40.71	41	9.65	50	11.76	91	21.41
2	425	176	41.41	36	8.47	56	13.18	92	21.65
3	425	167	39.29	59	13.88	43	10.12	102	24.00
4	425	165	38.82	53	12.47	40	9.41	93	21.88
5	425	159	37.41	48	11.29	43	10.12	91	21.41
6	425	165	38.82	55	12.94	45	10.59	100	23.53
7	425	151	35.53	53	12.47	52	12.24	105	24.71
8	425	178	41.88	37	8.71	44	10.35	81	19.06
9	425	167	39.29	50	11.76	46	10.82	96	22.59
10	425	179	42.02	49	11.50	31	7.28	80	18.78
12	425	170	40.00	53	12.47	41	9.65	94	22.12
18	425	157	36.94	65	15.29	52	12.24	117	27.53
均值 Mean	425	167.25	39.34	49.92	11.74	45.25	10.65	95.17	22.39
11	425	195	45.88	28	6.59	46	10.82	74	17.41
13	425	131	30.82	57	13.41	79	18.59	136	32.00
17	425	160	37.65	48	11.29	42	9.88	90	21.18
41	425	171	40.24	45	10.59	34	8.00	79	18.59
均值 Mean	425	164.25	38.65	44.50	10.47	50.25	11.82	94.75	22.29
16	425	157	36.94	50	11.76	45	10.59	95	22.35

2.2 MSAP 遗传多样性分析

为探讨不同加勒比松种源基因组中发生甲基 化的多样程度,依据 Cervera 等^[13]的方法产生了 17 个种源的 2 个二维矩阵,即由 DNA 序列变异引起 的甲基化不敏感扩增多态性(methylation-insensitive polymorphism, MISP)和由甲基化变异引起的甲基 化敏感扩增多态性(methylation-sensitive polymerphism, MSP)。以 MISP 为基础分析 17 个种源的遗 传多样性水平,加勒比松种源多态性位点数为 425, 多态性位点百分率为 100.00%。Nei's 基因多态性指 数(H)和 Shannon 信息指数(I)分别为 0.4376、0.6272。 以 MSP 为基础分析 17 个种源的 DNA 甲基化多样 性,加勒比松种源的多态性位点数为 421,多态性 位点百分率为 99.06%。Nei's 基因多态性指数(H)和 Shannon 信息指数(I)分别为 0.3274 和 0.5026。这表 明 17 个加勒比松种源在物种水平上具有较高的遗 传与表观遗传多样性,DNA 序列遗传多样性高于表 观遗传多样性。将 MISP 矩阵与 MSP 矩阵进行 Mantel 检验,基因组遗传变异与表观遗传变异不存 在相关性(r=-0.171, P=0.16)。

2.3 聚类分析

利用 NTSYSpc 软件进行 Mantel 检测, 将已经 获得的 MISP 和 MSP 两种转化数据, 通过 UPGMA 法, 得到 MISP 和 MSP 的聚类分析结果(图 1, 2), Mantel 检测的 *r* 值分别为 0.9004 和 0.6342, 说明聚 类结果相对较好。

以 MISP 为基础, 17 个种源的遗传距离为

0.186~0.608, 6 号种源与 11 号种源的遗传距离最 小,为 0.186, 4 号种源与 17 号种源的遗传距离最 大,为 0.608。从图 1 可见, 17 个种源在遗传距离 0.53 处分为 4 大类,第一类为 1、4 和 13 号种源,第 二类为 3、5、6、11、8、41、10、12、7、18、9 和 16 号种源,第三类为 2 号种源,第四类为 17 号 种源。

图 1 加勒比松 17 个种源的 MISP 聚类。1~17 见表 1。下图同。

Fig. 1 UPGMA dendrogram of 17 provenances of Piuns caribaea based MISP. 1-17 see Table 1. The same is following Figure.

图 2 加勒比松 17 个种源的 MSP 聚类

Fig. 2 UPGMA dendrogram of 17 provenances of Piuns caribaea based MSP

以 MSP 为基础, 17 个种源间的表观遗传距离 为 0.663~1.848, 13 号与 18 号种源的遗传距离最近 (0.663),2 号与 11 号种源的遗传距离最远(1.848),平 均表观遗传距离为 1.133。从图 2 可见, 17 个种源 在遗传距离 1.33 处分为 3 大类,第一类为 1 和 2 号 种源,第二类为 3、16、41、8、4、6、5、7、18、 13、10、17、9 和 12 号种源,第三类为 11 号种源。

表观聚类与遗传聚类间存在较大差异,两种聚 类方法均未将3个加勒比松变种分开,但MSP聚 类结果可以将古巴加勒比松11号种源与其他种源 分开,表明加勒比松变种间的表观遗传变异较为丰 富,不同变种间可能存在一定的基因渗透。

3 讨论

3.1 加勒比松种源苗期的 DNA 甲基化模式

本研究结果表明,加勒比松种源苗期的 DNA 甲基化水平相对较低, 17 个种源的 DNA 甲基化率 为17.41%~32.00%,其中洪都拉斯加勒比松种源为 18.78%~27.53%,古巴加勒比松种源为17.41%~ 32.00%,巴哈马加勒比松种源为 22.35%,低于意大 利石松(Pinus pinea, 42.73%~47.90%)^[14]、菊花脑 (54.6%~62.6%)^[9]和白菜(Brassica rapa ssp. pekinensis, 23.9%~55.8%)^[15],而与毛白杨(Populus tomentosa, 26.75%~29.39%)^[16]、欧美杨 (P. euramericana, 16.93%~25.11%)^[17]、杉木(Cunninghamia lanceolata, 20.66%~25.40%)^[18]、落叶松(Larix gmelinii, 19.92%~ 23.14%)^[19]和棉花(Gossypium hirsutum, 19.18%~ 28.69%)^[20]等物种相近。有研究表明,半甲基化是 在 DNA 复制过程中产生的,是 DNA 复制过程中的 一个中间状态^[13]。如芦苇(Phragmites austrilis)发育 完全的幼嫩叶片全甲基化率高于半甲基化率[12],对 模式植物拟南芥(Arabidopsis thaliana)的甲基化研究 得到同样结论^[21]; 芥蓝(Brassica oleracea var. alboglabra)的 DNA 甲基化模式以半甲基化为主^[22], 一年生辣椒(Capsicum annuum)与中华辣椒(C. chinense)种质的内甲基化率大于外甲基化率^[23]。本 研究中 1、2、8、11 和 13 号种源的全甲基化率高 于半甲基化率外,其他种源的全甲基化率低于半甲 基化率,加勒比松种源苗期的甲基化模式以半甲基 化为主,这是否与参试种源苗期幼态性、发育时期、 种源数量、不同种源分布区环境以及不同种源类型 等因素有关,还有待进一步研究。

3.2 加勒比松种源苗期的表观遗传多样性

水稻(Oryza sativa)的 DNA 甲基化率(52.37%)明 显高于 DNA 序列多样性位点的比例(17.00%)^[24],西 瓜(Citrullus lanatus)的基因组甲基化率(43%)也高于 遗传多样性(19.8%)^[25],说明基因组 DNA 甲基化的 可塑性强于 DNA 序列的可塑性。本研究中加勒比 松种源的遗传多样性高于表观遗传多样性,表明种 源间的遗传变异更加丰富。另外 MISP 遗传多样性 比 SSR/SRAP 加勒比松群体大树的平均遗传多样 性(H=0.1743、I=0.2665)高^[26],这可能与试验材料 及材料的不同发育时期有关。

栽培人参(Panax ginseng)与野生人参间的基因 遗传距离(0.0343)显著大于二者的表观遗传距离 (0.0164),说明驯化造成栽培人参和野生人参间的遗 传分化要显著大于二者间的表观遗传分化^[27]。本研 究中,加勒比松的表观遗传距离明显大于基因遗传 距离,这与对人参等植物的研究结果相反,初步表 明在加勒比松进化过程中表观遗传分化作用明显 大于基因遗传分化。中国杂交籼稻 ISSR 标记与 MSAP 标记的遗传距离呈正相关(r=0.55, P=0.04), 二者的相关系数达到 0.89,表明在遗传多样性评价 上两种技术大致等效^[24]。本研究中 3 个加勒比松变 种间的 MISP 遗传距离变异范围与 SSR/SRAP^[26] 遗传距离变异范围相比,总体差异不大,说明可以 用 MSAP 技术开展加勒比松遗传多样性研究。

有研究表明,表观等位基因可以引起明显的表 型差异,由此可以推断,甲基化多样性是群体分化 的一个重要影响因素^[28]。对一年生野生大豆 (Glycine soja)和栽培大豆(G. max)甲基化遗传多样 性进行聚类分析,结果表明,有2~4个栽培大豆被 分到野生大豆群体里,但没有野生大豆分在栽培大 豆群体里,这有可能是野生大豆和栽培大豆间的渐 渗产生的^[29]。表观遗传聚类结果同样表明,栽培人 参中有2个个体被分到野生人参的分支中[27]。丹参 (Salvia miltiorrhiza)的 MSP 聚类表明,不同居群间 的单株有交叉现象^[30]。同一辣椒栽培种未归为同一 表观遗传聚类中,表明辣椒表观遗传变异较基因组 遗传变异更为丰富^[23]。另有研究表明,与 DNA 序 列变异相比, DNA 甲基化变异更加普遍, 如不同生 态环境下(河畔和盐碱地)拉关木(Laguncularia racemosa)的 DNA 甲基化存在大量变异,而基因组 变异较小^[31];不同生态型拟南芥甲基化调控机制不 同,导致甲基化多态性不相关,最终亲缘关系较近 个体未归为同一类^[13]。本研究的 MISP 聚类结果表 明,古巴加勒比松 11 号种源与洪都拉斯加勒比松 6 号种源关系最近,与 Dvorak 等^[4]用 RAPD 和 Lev^[3] 用 SSR 标记获得的聚类结果不同。其他古巴加勒比 松、巴哈马加勒比松也不同程度地与洪都拉斯加勒 比松聚在一起,没有被分开,表明加勒比松表观遗 传变异极为丰富。但值得注意的是利用 MSP 聚类, 能将原生种源 11 号与其他大部分种源分开。本研 究中参试材料有 11 个原生种源来自天然林,6 个次 生种源来自不同改良程度的种子园,可能这些原生 种源和次生种源在适应不同环境过程中甲基化发 生不同程度变化,环境不同导致不同种源间具有不 同的甲基化调控机制。

3.3 加勒比松种源苗期的 DNA 甲基化与遗传变异

对西瓜^[25]、水稻^[32]、芦苇^[12]等的研究表明、基 因组遗传多样性与表观遗传多样性间存在相关性 或聚类结果相似,说明 DNA 甲基化遗传变异与基 因遗传变异相伴发生,前者依赖于后者调控,这也 表明 DNA 甲基化在调节植物基本适应能力方面是 一个可塑的机制[12]。对高度自花授粉植物拟南芥10 个生态型(30~50 株混合为1个 DNA 样品)的 DNA 甲基化研究表明,甲基化敏感多态性与甲基化不敏 感多态性二维矩阵间没有相关性,说明甲基化可能 具有独立的控制系统^[13]。而对高度异交植物短芒野 大麦(Hordeum brevisubulatum)的研究表明,基于 MSP 与 MISP、AFLP 和 S-SAP 的 Jaccard 相似性二 维矩阵具有一定的相关,不能判别甲基化状态控制 系统是否为独立的系统^[33]。水稻的基因遗传与表观 遗传变异间的相关系数为62%,表明一些DNA甲基 化与 DNA 序列间存在相关性,也存在一定独立性, 独立性位点的选择对水稻品种改良具有独特贡 献^[24]。本研究中加勒比松甲基化多样性与遗传多样 性没有相关性,这与拟南芥^[13,34-36]、水稻^[36-37]、大 豆^[29]、甜樱桃^[10]的研究结果一致,表明 DNA 甲基 化与基因遗传变异的产生存在不同的机制。另外加 勒比松种源表观和遗传的聚类结果差异较大,同样 说明表观遗传学与基因组遗传变异可能存在不同 的调控机制,这种调控可能是独立的。

参考文献

 ADAMS D C, JACKSON J F. A phylogenetic analysis of the southern pines (*Pinus* subsect. *Australes* Loudon): Biogeographical and ecological implications [J]. Proc Biol Soc Washington, 1997, 110(4): 681-692.

- [2] ZHENG Y Q, ENNOS R A. Genetic variability and structure of natural and domesticated populations of Caribbean pine (*Pinus caribaea* Morelet) [J]. Theor Appl Genet, 1999, 98(5): 765–771. doi: 10.1007/ s001220051133.
- [3] JARDÓN-BARBOLLA L, DELGADO-VALERIO P, GEADA-LÓPEZ G, et al. Phylogeography of *Pinus* subsection *Australes* in the Caribbean Basin [J]. Ann Bot, 2011, 107(2): 229–241. doi: 10.1093/aob/ mcq232.
- [4] DVORAK W S, JORDON A P, HODGE G P, et al. Assessing evolutionary relationships of pines in the *Oocarpae* and *Australes* subsections using RAPD markers [J]. New For, 2000, 20(2): 163–192. doi: 10. 1023/A:1006763120982.
- [5] LÓPEZ G G, KAMIYA K, HARADA K. Phylogenetic relationships of *Diploxylon* pines (subgenus *Pinus*) based on plastid sequence data [J]. Int J Plant Sci, 2002, 163(5): 737–747. doi: 10.1086/342213.
- [6] IBARRA C A, FENG X Q, SCHOFT V K, et al. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes [J]. Science, 2012, 337(6100): 1360–1364. doi: 10. 1126/science.1224839.
- [7] ROY N, CHOI J Y, LIM M J, et al. Genetic and epigenetic diversity among dent, waxy, and sweet corns [J]. Genes Genom, 2015, 37(10): 865–874. doi: 10.1007/s13258-015-0329-7.
- [8] QI X Y, WANG H B, NING Y X, et al. Genetic diversity and methylation polymorphism analysis of *Chrysanthemum nankingense* [J]. Biochem Syst Ecol, 2017, 72: 1–7. doi: 10.1016/j.bse.2017.03.006.
- [9] KEYTE A L, PERCIFIELD R, LIU B, et al. Infraspecific DNA methylation polymorphism in cotton (*Gossypium hirsutum* L.) [J]. J Hered, 2006, 97(5): 444–450. doi: 10.1093/jhered/esl023.
- [10] AVRAMIDOU E V, GANOPOULOS I V, DOULIS A G, et al. Beyond population genetics: Natural epigenetic variation in wild cherry (*Prunus avium*) [J]. Tree Genet Genom, 2015, 11(5): 95. doi: 10.1007/s 11295-015-0921-7.
- [11] SAE-EUNG C, KANCHANAKETU T, SANGDUEN N, et al. DNA methylation and genetic diversity analysis of genus *Cycas* in Thailand [J]. Afr J Biotechnol, 2012, 11(4): 743–751. doi: 10.5897/AJB11.2835.
- [12] SHI B. Epigenetic diversity of 4 wild reed [*Phragmites austrilis* (Cav.) Trirn. ex Steud] natural populations endemic to Nenjiang Plain, China
 [D]. Changchun: Northeast Normal University, 2012: 15–28.
 - 石奔. 中国嫩江平原芦苇[*Phragmites austrilis* (Cav.) Trim. ex Steud] 四个天然种群的表观遗传多样性研究 [D]. 长春:东北师范大学, 2012: 15-28.

- [13] CERVERA M T, RUIZ-GARC A L, MART NEZ-ZAPATER J. Analysis of DNA methylation in *Arabidopsis thaliana* based on methylation-sensitive AFLP markers [J]. Mol Genet Genom, 2002, 268(4): 543–552. doi: 10.1007/s00438-002-0772-4.
- [14] SÁEZ-LAGUNA E, GUEVARA M Á, DÍAZ L M, et al. Epigenetic variability in the genetically uniform forest tree species *Pinus pinea* L.
 [J]. PLoS One, 2014, 9(8): e103145. doi: 10.1371/journal.pone.010 3145.
- [15] TAO L, WANG X L, GUO M H, et al. Analysis of genomic DNA methylation and gene expression in Chinese cabbage (*Brassica rapa* L. ssp. *pekinensis*) after continuous seedling breeding [J]. Russ J Genet, 2015, 51(8): 774–782. doi: 10.1134/S1022795415080116.
- [16] MA K F, ZHANG Z Y, WANG S Q, et al. Optimization of MSAP system and preliminary analysis of DNA methylation in *Populus* tomentosa [J]. J NE For Univ, 2012, 40(12): 1–7. doi: 10.3969/j.issn. 1000–5382.2012.12.001.

马开峰, 张志毅, 王斯琪, 等. 毛白杨 MSAP 体系优化及 DNA 甲基 化的初步分析 [J]. 东北林业大学学报, 2012, 40(12): 1–7. doi: 10. 3969/j.issn.1000-5382.2012.12.001.

- [17] HU B Q, HAN C L, WANG B, et al. Cytosine methylation at CG and CNG sites is differential during the development of triploid black poplar [J]. J Plant Biochem Biotechnol, 2013, 22(4): 414–424. doi: 10.1007/s13562-012-0170-x.
- [18] HONG Z, SHI J S, ZHENG R H, et al. Epigenetic inheritance and variation of DNA methylation in Chinese Fir (*Cunninghamia lanceo-lata*) intraspecific hybrids [J]. Mol Plant Breed, 2009, 7(3): 591–598. doi: 10.3969/mpb.007.000591.

洪舟, 施季森, 郑仁华, 等. 杉木亲本自交系及其杂交种 DNA 甲基 化和表观遗传变异 [J]. 分子植物育种, 2009, 7(3): 591–598. doi: 10. 3969/mpb.007.000591.

- [19] LI A, LIU C, HAN C L, et al. Variation in cytosine methylation patterns between reciprocal hybrids and their parental line in *Larix* [J]. Acta Sci Nat Univ Nankai, 2012, 45(5): 65–71.
 李爱,刘超,韩春乐,等. 落叶松优势杂交子代与亲本间基因组 DNA甲基化变异研究 [J]. 南开大学学报(自然科学版), 2012, 45(5):
- [20] WEI J, FAN H H, LI T C, et al. The effects of reciprocal cross on inheritance of DNA methylation in cotton (*Gossypium hirsutum*) [J]. Afr J Biotechnol, 2012, 11(23): 6383–6386. doi: 10.5897/AJB11.4212.

65-71

[21] KAEPPLER S M, PHILLIPS R L. Tissue culture-induced DNA methylation variation in maize [J]. Proc Natl Acad Sci USA, 1993, 90 (19): 8773–8776. doi: 10.1073/pnas.90.19.8773.

[22] SHI W D, HUANG R K, CHEN Z D, et al. The epigenetic genetic

diversity of 18 Chinese kales analyzed by MSAP when initiated flowering [J]. Genom Appl Biol, 2012, 31(5): 505–512. doi: 10.3969/gab.031.000505.

- 史卫东,黄如葵,陈振东,等.利用 MSAP 分析 18 个芥蓝齐口期的 表观遗传多样性 [J]. 基因组学与应用生物学, 2012, 31(5): 505-512. doi: 10.3969/gab.031.000505.
- [23] LI T, XU X W, LI Y, et al. Surveying DNA methylation diversity in the Capsicum annuum L. and Capsicum chinense Jacquin [J]. Mol Plant Breed, 2014, 12(2): 306–315. doi: 10.13271/j.mpb.012.000306.
 李涛, 徐小万, 李颖, 等. 一年生辣椒(Capsicum annuum L.)与中华 辣椒(Capsicum chinense Jacquin) DNA 甲基化多样性分析 [J]. 分子 植物育种, 2014, 12(2): 306–315. doi: 10.13271/j.mpb.012.000306.
- [24] PENG H, JIANG G H, ZHANG J, et al. DNA methylation polymorphism and stability in Chinese *indica* hybrid rice [J]. Sci China Life Sci, 2013, 56(12): 1097–1106. doi: 10.1007/s11427-013-4576-z. 彭海, 江光怀, 张静, 等. 中国杂交籼稻 DNA 甲基化多样性与遗传 稳定性 [J]. 中国科学: 生命科学, 2014, 44(1): 45–53.
- [25] NIMMAKAYALA P, VAJJA G, GIST R A, et al. Effect of DNA methylation on molecular diversity of watermelon heirlooms and stability of methylation specific polymorphisms across the genealogies [J]. Euphytica, 2011, 177(1): 79–89. doi: 10.1007/s10681-010-0259-z.
- [26] LI Y L, ZHAO F C, LI X Z, et al. Analysis of genetic diversity of *Pinus elliottii* and *P. caribaea* germplasm resources [J]. Guangdong For Sci Technol, 2014, 30(6): 9–14. doi: 10.3969/j.issn.1006-4427.2014.06. 002.
 - 李义良,赵奋成,李宪政,等. 湿地松、加勒比松种质资源遗传多样 性分析 [J]. 广东林业科技, 2014, 30(6): 9–14. doi: 10.3969/j.issn. 1006-4427.2014.06.002.
- [27] ZHOU Y X. The study on epigenetic structure of *Panax ginseng* [D]. Changchun: Northeast Normal University, 2015: 25–36.
 周玉新. 人参的表观遗传结构研究 [D]. 长春: 东北师范大学, 2015: 25–36.
- [28] KALISZ S, PURUGGANAN M D. Epialleles via DNA methylation: Consequences for plant evolution [J]. Trends Ecol Evol, 2004, 19(6): 309–314. doi: 10.1016/j.tree.2004.03.034.
- [29] ZHONG X F. The study of DNA methylation polymorphism and genetic diversity and copia-like retrotransposon reverse transcriptase of annual wild soybean (*Glycine soja*) and cultivated soybean (*G. max*) [D]. Changchun: Northeast Normal University, 2009: 30.
 - 仲晓芳. 一年生野生大豆(*Glycine soja*)和栽培大豆(*G. max*)的 DNA 甲基化多样性和遗传多样性研究及 copia-like 反转录转座子反转录 酶分析 [D]. 长春:东北师范大学, 2009: 30.

[30] ZHANG Y, CHU H J, ZHANG J J. Comparative research on genetic

and epigenetic diversity of salvia miltiorrhiza populations in Qinba Mountain Area [J]. Acta Agric Boreali-Occid Sin, 2012, 21(10): 142– 148,206.

张逸, 褚会娟, 张今今. 秦巴山区丹参居群遗传与表观遗传多样性 比较 [J]. 西北农业学报, 2012, 21(10): 142–148,206.

- [31] LIRA-MEDEIROS C F, PARISOD C, FERNANDES R A, et al. Epigenetic variation in mangrove plants occurring in contrasting natural environment [J]. PLoS One, 2010, 5(4): e10326. doi: 10.1371/journal. pone.0010326.
- [32] TAKATA M, KISHIMA Y, SANO Y. DNA methylation polymorphisms in rice and wild rice strains: Detection of epigenetic markers [J]. Breed Sci, 2005, 55(1): 57–63. doi: 10.1270/jsbbs.55.57.
- [33] LI Y D. Molecular genetic and epigenetic diversity and genetic structure of wild barley [*Hordeum brevisubulatum* (Trin.) Link] artificial populations endemic to Songnen Prairie, China [D]. Changchun: Northeast Normal University, 2007: 33–34.

李毅丹. 中国松嫩草原短芒野大麦[Hordeum brevisubulatum (Trin.) Link]人工种群的分子遗传与表观遗传多样性及其种群遗传结构的 研究 [D]. 长春:东北师范大学, 2007: 33-34.

- [34] VAUGHN M V, TANURDŽIĆ M, LIPPMAN Z, et al. Epigenetic natural variation in *Arabidopsis thaliana* [J]. PLoS Biol, 2007, 5(7): e174. doi: 10.1371/journal.pbio.0050174.
- [35] RIDDLE N C, RICHARDS E J. Genetic variation in epigenetic inheritance of ribosomal RNA gene methylation in *Arabidopsis* [J]. Plant J, 2005, 41(4): 524–532. doi: 10.1111/j.1365-313X.2004.02317.x.
- [36] ASHIKAWA I. Surveying CpG methylation at 5'-CCGG in the genomes of rice cultivars [J]. Plant Mol Biol, 2001, 45(1): 31–39. doi: 10.1023/A:1006457321781.
- [37] WANG Y M, LIN X Y, DONG B, et al. DNA methylation polymorphism in a set of elite rice cultivars and its possible contribution to inter-cultivar differential gene expression [J]. Cell Mol Biol Lett, 2004, 9(3): 543–556.