从南方红豆杉中筛选和鉴定 25 株产紫杉烷的内生 真菌

戴黄益 1,2, 刘明志 1*, 段中岗 1, 马细兰 1, 吕镇城 1

(1. 惠州学院生命科学学院, 广东 惠州 516007; 2. 西南林业大学生命科学学院, 昆明 650224)

摘要: 为从南方红豆杉(Taxus chinensis var. mairei)中分离产紫杉烷的内生真菌,从其幼茎、树皮和叶片中分离纯化了 491 株内生真菌,经筛选获得 25 株内生真菌具有产紫杉烷的能力,其中,4 株可产紫杉醇、巴卡亭Ⅲ和 10-去乙酰巴卡亭Ⅲ,8 株能产紫杉醇和巴卡亭Ⅲ,1 株能产紫杉醇和 10-去乙酰巴卡亭Ⅲ,1 株能产紫杉醇和巴卡亭Ⅲ,6 株仅产紫杉醇,5 株仅产巴卡亭Ⅲ。根据内生真菌的来源,幼茎中有 11 株产紫杉烷的内生真菌,叶片中有 9 株,而树皮中仅有 5 株。这些菌株的紫杉醇、巴卡亭和 10-去乙酰巴卡亭Ⅲ产量分别为 0.64~9.87、0.48~3.42 和 0.20~1.00 μg L⁻¹。因此,南方红豆杉中具有紫杉烷类代谢途径的内生真菌来源广,数量多,是研究真菌中紫杉烷类化合物代谢途径的良好材料,也为紫杉烷类抗癌药生产提供了潜在的真菌种源。

关键词: 南方红豆杉; 内生真菌; 紫杉醇; 巴卡亭III; 10-去乙酰巴卡亭III doi: 10.11926/jtsb.3657

Screening and Identification Twenty-five Strains of Taxane-producing Endophytic Fungi from *Taxus chinensis* var. *mairei*

DAI Huang-yi^{1,2}, LIU Ming-zhi^{1*}, DUAN Zhong-gang¹, MA Xi-lan¹, LÜ Zhen-cheng¹

(1. School of Life Science, Huizhou University, Huizhou 516007, Guangdong, China; 2. College of Life Science, Southwest Forestry University, Kunming 650224, China)

Abstract: In order to isolate and screen the taxane-producing endophytic fungi, there were 491 strains of endophytic fungi had been isolated and purified from young stems, barks and leaves of *Taxus chinensis* var. *mairei*. Twenty-five strains of endophytic fungi could produce taxane, in which four strains produce taxol, baccatin III and 10-deacetyl baccatin, eight strains produce taxol and baccatin III, one strain taxol and 10-deacetyl baccatin, one strain produce baccatin III and 10-deacetyl baccatin, and six strains only produce taxol, and five strains only produce baccatin III. Taxane-producing endophytic fungi derived from young stems, leaves and barks were eleven strains, nine strains and six strains, respectively. The yields of taxol, baccatin III and 10-deacetyl baccatin III were ranged from 0.64 to 9.87 μ g L⁻¹, 0.48 to 3.42 μ g L⁻¹, and 0.20 to 1.00 μ g L⁻¹, respectively. Therefore, the taxane-producing endophytic fungi had wide distribution and more strains in *T. chinensis* var. *mairei*, and it could be good materials for studying metabolic pathways of taxane diterpenoids, and also could provide more potential fungal resources for taxane anticancer drugs.

Key words: Taxus chinensis var. mairei; Endophytic fungi; Taxol; Baccatin III; 10-Deacetyl baccatin III

紫杉醇(药品名: Taxol,通用名: Paclitaxel)是一种具有抗癌活性的紫杉烷类二萜化合物,1971年首次发现于短叶红豆杉(*Taxus brevifolia*)中^[1]。1992

年,紫杉醇被美国 FDA 批准上市。目前,市场上的紫杉醇主要是从大规模人工栽培的红豆杉属 (Taxus)植物中提取,且难以满足市场需求。1993 年,

收稿日期: 2016-08-15 **接受日期**: 2016-11-21

基金项目: 广东省科技计划项目(2013B060400026)资助

This work was supported by the Planning Project for Science and Technology in Guangdong (Grant No. 2013B060400026).

^{*} 通信作者 Corresponding author. E-mail: tlmz63@163.com

Stierle 等首次报道了产紫杉醇的内生真菌^[2]。这引起研究者的极大兴趣和热情,因为真菌发酵生产紫杉醇具有生产周期短,无需占用大量土地资源,可进行大规模工业化生产,且生产过程可调控等优点,具有巨大的应用前景。

在红豆杉属植物的紫杉醇生物合成途径中,二 萜类的通用前体香叶基香叶基焦磷酸(Geranyl geranyl diphosphate, GGPP) 经紫杉二烯合成酶 (Taxadiene synthase, TS)催化合成紫杉二烯, 再经过 羟基化反应和酰基转移反应,形成10-去乙酰巴卡亭 III (10-Deacetyl baccatin III, 10-DAB), 10-DAB 在 10-去乙酰巴卡亭III-10-O-乙酰基转移酶(DBAT)作用 下合成巴卡亭[[[3], 经巴卡亭[]]: 3-氨基-3-苯基丙酰 转移酶(BAPT)将氨基苯丙酰基移到巴卡亭III的C-13 侧链^[4],最后经 3'-N-去苯甲酰-2'-脱氧紫杉醇苯甲酰 转移酶(DNTNBT)使侧链 C-3′氨基发生苯甲酰化反 应合成紫杉醇^[5]。此外,10-DAB 可作为另一种重要 的抗癌药多西紫杉醇(多西他赛)(Docetaxel/taxotere) 的半合成前体,其疗效好于紫杉醇,1996年经美国 FDA 批准上市。近年来的研究表明,巴卡亭III和 10-DAB 也具有显著的抗癌活性[6-7]。因此,从红豆杉中, 在筛选产紫杉醇的内生真菌的基础上, 筛选产巴卡 亭III和 10-DAB 有利于阐明内生真菌的紫杉醇生物 合成途径, 也具有重要的应用前景。

目前,对红豆杉中内生真菌的筛选主要集中于产紫杉醇的内生真菌,而对产巴卡亭III和产 10-DAB的内生真菌的筛选研究仅有少量报道^[8-12]。本研究通过大规模筛选,以期从南方红豆杉(*Taxus chinensis* var. *mairei*)中获得产紫杉醇、产巴卡亭III及产 10-DAB的内生真菌,为紫杉烷类抗癌药研究提供新的来源。

1 材料和方法

1.1 材料

南方红豆杉(Taxus chinensis var. mairei)经允许于 2014年12月采自于广东省韶关市乳源县大桥镇和平村的南方红豆杉森林公园。为获得具生物多样性的内生真菌,采集不同地点和不同树龄的南方红豆杉幼茎、叶片和少量树皮,装入密封塑料袋带回实验室备用。采集地位于北纬25°06′36″~25°06′44″,东经113°09′31″~113°09′37″,SG、SL、SK和SJ分别表示4个采集地点的树皮,JA、JB、JC、JD和

JE 分别表示 5 个采集点的幼茎,YA、YB、YC、YD 和 YE 表示 5 个采集点幼茎上的叶片,MA、MB、MC、MD 和 ME 表示 5 个采集点叶片的研磨物。所获得的内生真菌以上述代号加编号表示。

紫杉醇标准品购自中国食品药品检定研究院, 纯度为99.6%,巴卡亭III和10-去乙酰巴卡亭III标准 样品购自上海同田生物技术股份有限公司,两者纯 度均为98.0%。

1.2 内生真菌的分离和纯化及保藏

将采摘的南方红豆杉树皮、幼茎及叶片分别用75%乙醇浸泡30 s,弃乙醇后用0.1%升汞溶液浸泡8 min,无菌水冲洗5次,用无菌滤纸吸干表面水分,用无菌解剖刀将树皮切成约1 cm²小片,幼茎切成0.5 cm 长小段,每个叶片切成2至3段,同时,消毒叶片置于无菌研钵中研磨成浆,分别接种于添加100 mg L^{-1} 硫酸链霉素和100 mg L^{-1} 氨苄青霉素钠的PDA 固体平板培养基上,于28℃恒温箱中培养。为了排除非内生真菌干扰,将冲洗材料的无菌水也接种于PDA 平板培养基上观察是否有真菌长出。

培养 1 周后每个平板上生长多个内生真菌菌落,采用菌丝顶端纯化法,将菌落顶端菌丝挑出接种于新的 PDA 固体培养基上培养,直至长出单个菌落,然后接种到 PDA 斜面培养基上,按 1.1 节中的方法编号,并常温保存于本实验室中。对于经鉴定可产紫杉烷的内生真菌暂时保藏于冰箱中备用。

1.3 产紫杉烷内生真菌的初筛

将纯化的内生真菌接种于 PDA 平板培养基上培养以活化菌株。活化后接种于装有 250 mL YES 液体培养基的 500 mL 三角瓶中,置于 AW-211C 大容量恒温培养震荡器中,于 28℃、150 r min⁻¹ 下培养 7 d。过滤收集菌丝体,置于-18℃冰箱中冷冻。将解冻后的菌丝体置于研钵中研磨成匀浆,加入适量水和等体积的乙酸乙酯,萃取 3 次,合并 3 次上清液,置于旋转蒸发仪中,经 80℃减压蒸发浓缩得浓缩提取液。

用毛细点样管将样品浓缩液以及紫杉醇、巴卡亭III和 10-DAB 标准样品点样于自制的制备型 GF₂₅₄薄层层析硅胶板上,在封闭的层析缸中展层,展层剂为二氯甲烷:甲醇(20:1),在三用紫外分析 仪下观察是否有与紫杉醇、巴卡亭III和 10-DAB 具有相近 Rf 值的样品,用刀片刮下样品中与标样 Rf

值相近的硅胶条带,置于 1.5 mL 的 EP 管中,加色 谱甲醇溶解,离心,取上清液,再重复离心和取上 清液操作 2 次,合并 3 次的上清液,将上清液放于 通风橱中挥发至 1 mL。将样品液置于 UV-2550 型 紫外-可见分光光度计下于 200~300 nm 范围内进行 紫外扫描,检测 273 nm 的光吸收^[1],用于筛选产紫 杉醇样品。

1.4 产紫杉烷内生菌的复筛和含量及紫杉烷的鉴定

经薄层层析和紫外吸收分析的样品提取液体 积调整至 0.5 mL,然后用 0.22 μm 的微孔滤膜过滤。 紫杉醇、巴卡亭III和 10-DAB 标准样配制成一定浓 度后也经微孔滤膜过滤。产紫杉烷的内生真菌的复 筛和含量采用高效液相色谱(High performance liquid chromatograph, HPLC)分析。采用安捷伦 1220 液相色 谱仪, 色谱柱为 ZORBAX Eclipse Plus C18 (4.6 mm× 250 mm, 5µm)。紫杉醇的检测:流动相为甲醇:水 (65:35), 流速 1 mL min⁻¹, 检测波长 227 nm, 柱 温 45℃, 进样量为 10 此。设置甲醇:水梯度洗脱 以分离巴卡亭Ⅲ、10-DAB 和紫杉醇, 洗脱时间和 洗脱剂分别为: 0 min, 35:65; 2~5 min, 55:45; 6~ 23 min, 65:35; 24~40 min, 100:0, 柱温 40℃, 其他条件与紫杉醇相同。为进一步分离巴卡亭Ⅲ 和 10-DAB,设置甲醇:水=50:50 作为洗脱剂, 其他条件同梯度洗脱。待测样品中的紫杉醇、巴 卡亭III和 10-DAB 含量需要制作标准曲线。先将 紫杉醇、巴卡亭III和 10-DAB 配制成 10 μg mL⁻¹ 的母液, 然后将母液分别稀释成 1、2、3、4 和 6 ug mL^{-1} ,分别进行 HPLC 分析,根据保留时间 和标样浓度对应的峰面积获得回归曲线, 根据回 归方程计算样品中的紫杉醇、巴卡亭III和 10-DAB 含量和浓度。

质谱分析和检测采用 maXis impact 超高分辨质谱仪(德国 Brucker 公司),高分辨质谱条件为喷雾压力: 0.3 Bar,干燥温度: 180℃,干燥压力: 4.0 L min⁻¹,喷雾电压: 3500 V,离子源: ESI。测试工作在华南理工大学分析测试中心完成。

2 结果和分析

2.1 产紫杉烷内生真菌的分离及初步筛选

在 PDA 平板培养基中加入 $100~{\rm mg}~{\rm L}^{-1}$ 硫酸链霉素和 $100~{\rm mg}~{\rm L}^{-1}$ 氨苄青霉素钠分别抑制革兰氏阳

性和革兰氏阴性细菌的生长。此外,将冲洗材料的无菌水接种于 PDA 平板培基上培养,结果无真菌生长,说明所分离纯化的真菌为内生真菌,而非外源的污染真菌,同时也说明,升汞处理 8 min可杀灭外源真菌。本文从 4 个地点采集树皮和 5 个地点采集幼茎和叶片,共分离纯化了 491 株内生真菌。

样品浓缩液经硅胶薄层层析,在样品中有与紫杉醇标样的 Rf 值相近的条带(图片未示),且数量较多,但难以判断这些内生真菌是否为产紫杉醇内生真菌。同时紫杉醇标样与巴卡亭III标样的 Rf 值相近,难于区分,但两者的 Rf 值与 10-DAB 的 Rf 值易于区分。将与紫杉醇标样 Rf 值相近的硅胶条带刮下来,经溶解后再进行紫外吸收分析,根据紫杉醇在 227 nm 处有最大吸收外,在 273 nm 处也有 1个次吸收峰,结果有 139 株内生真菌在 273 nm 有明显或不明显的紫杉醇吸收峰(图片未示)。对于巴卡亭III和 10-DAB 来说,在 273 nm 没有次吸收峰,通过薄层层析,收集与标样巴卡亭III和 10-DAB 的Rf 值相近的条带 286 个(图片未示)。

2.2 通过 HPLC 分析对产紫杉烷类菌株进行复筛和 紫杉烷含量测定

经 HPLC 分析,当流动相为甲醇:水=65:35,柱温 40℃时,紫杉醇的保留时间(Retention time)为 12.971 min (图 1),而巴卡亭Ⅲ和 10-DAB 的保留时间较早(图未示),且有很多杂质峰与巴卡亭Ⅲ峰和 10-DAB 峰混和在一起,不易区分,难于鉴定产巴卡亭Ⅲ菌株和产 10-DAB 菌株,甚至造成错误判断。当流动相为甲醇:水=55:45,柱温 35℃时,巴卡亭Ⅲ和 10-DAB 的保留时间分别为 7.77 min 和 5.66 min,且能较好地与杂质峰分开(图 2)。

结果表明,有 4 株菌株可产紫杉醇、巴卡亭III和 10-DAB,8 株菌株能产紫杉醇和巴卡亭III,1 株菌株能产紫杉醇和 10-DAB,1 株菌株能产巴卡亭III和 10-DAB,仅能产紫杉醇的菌株为 6 株,仅产巴卡亭III的菌株为 5 株(表 1)。因篇幅所限,本文仅展示有代表性的产紫杉醇、产巴卡亭III和产 10-DAB 各 1 株菌株的 HPLC 检测结果(图 1, 2)。为检测各菌株中紫杉醇、巴卡亭III和 10-DAB 的含量,分别制作紫杉醇、巴卡亭III和 10-DAB 的标准曲线,得到回归曲线和回归方程(图 3),根据回归方程分别计算各菌株的紫杉醇、巴卡亭III和 10-DAB 的产量(表 1)。

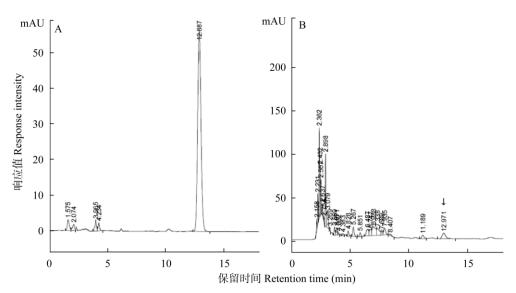


图 1 紫杉醇的 HPLC 分析。A: 标样; B: SJ17 菌株。

Fig. 1 HPLC analysis of taxol. A: Standard sample; B: SJ17 strain.

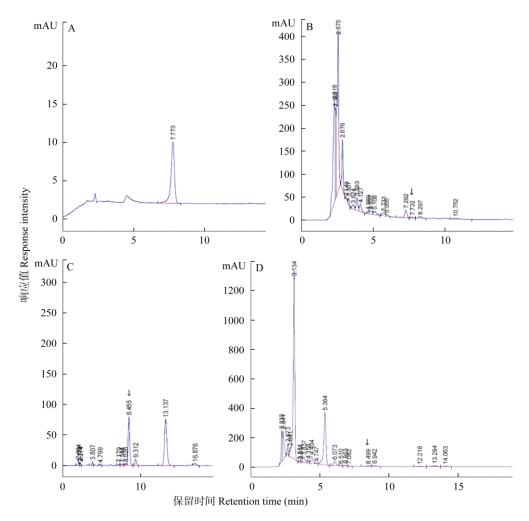


图 2 巴卡亭Ⅲ和 10-DAB 的 HPLC。A: 巴卡亭Ⅲ标样; B:JA13 菌株中的巴卡亭Ⅲ; C: 10-DAB 标样; D: MC15 菌株中的 10-DAB。

Fig. 2 Baccatin III and 10-DAB by HPLC. A: Standard baccatin III; B: Baccatin III in JA13 strain; C: Standard 10-DAB; D: 10-DAB in MC15 strain.

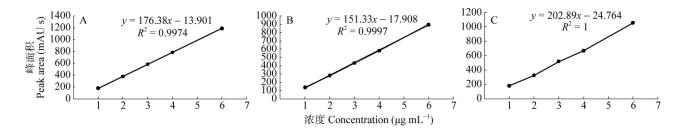


图 3 紫杉醇(A)、巴卡亭Ⅲ (B)和 10-DAB(C)的回归曲线和回归方程

Fig. 3 Regression curve and regression equation of taxol (A), baccatin III (B) and 10-DAB (C).

表 1 内生真菌的紫杉烷产量(µg L-1)

Table 1 Taxane yield (μg L⁻¹) of endophytic fungi

菌株 Strain	紫杉醇 Taxol	巴卡亭III Baccatin III	10-DAB	菌株 Strain	紫杉醇 Taxol	巴卡亭III Baccatin III	10-DAB
JA5	2.00	3.42	1.00	SJ22	9.87	2.50	0.36
JA10		0.84		SK3	0.98	2.01	
JA13	3.45	1.12		SL11	8.79	1.16	
JC21	0.64			MA4	0.83	1.04	
JC24		0.61		MA17	9.06		
JD3	5.20	3.23	0.57	MC15		3.26	0.50
JE2	1.61			MC19	1.78	1.25	
JE5	0.72		0.20	ME11	4.13	1.79	
JE6	4.12			YA2		2.37	
JE19	2.54	0.97	0.23	YA11		1.85	
JE27	5.53			YD4	2.20	0.48	
SJ1		0.87		YD14	3.20	1.83	
SJ17	3.64						

2.3 内生真菌中紫杉醇、巴卡亭Ⅲ和 10-DAB 的鉴定

经 HPLC 分析,上述 25 菌株在与 3 个标样相 同保留时间上均有离子峰,可初步判断为产紫杉 烷的内生真菌。本研究通过高分辨质谱对这25个 菌株的样品提取液进行了 3 个紫杉烷类化合 物分析,紫杉醇标样的离子特征峰为[M + Na]+= 876.3218 (图未显示), 其分子式 C47H51NO14, 分子 量 853.92, 在质谱数据库中的紫杉醇离子特征峰 为[M + Na]⁺=876.3202, 两者相差 0.0016, 即在 小数点后第3位数或第4位数有变化。对于表1 中检测的 19 株可能产紫杉醇的内生真菌, 其样品 提取液经 Na⁺轰击后,紫杉醇样品的离子特征峰 在876.3179~876.3221 之间(图片未示), 因此可判 断这19株菌株为产紫杉醇的内生真菌。对于样品 提取液中的巴卡亭Ⅲ和 10-DAB 的鉴定,也采用 类似的鉴定方法,即样品中的巴卡亭Ⅲ和 10-DAB 的离子特征峰与质谱数据库中的离子特征峰的相 对分子质量仅在小数点后第3位数或第4位数有 变化。结果表明,表1中所筛选的18株产巴卡亭 Ⅲ和 6 株产 10-DAB 的内生真菌均含有巴卡亭Ⅲ 或 10-DAB (图 4~6)。

3 讨论和结论

目前,对产紫杉醇内生真菌的筛选和研究主要是基于这些真菌可产紫杉醇,可以通过大规模工业化生产,成为红豆杉的替代者。对于产巴卡亭III或产 10-DAB 内生真菌的筛选,主要是基于巴卡亭III或 10-DAB 成为抗癌药紫杉醇或多西紫杉醇进行半合成的前体^[13-15]。虽然巴卡亭III或产 10-DAB 具有作为一种抗癌药的潜力,但这需要大量的前期基础研究和较长时间的临床试验。

本研究中,从南方红豆杉中筛选出多达 25 株产紫杉烷的内生真菌,这在以前的研究中很少见。主要原因一是严格按内生真菌的分离方法进行分离,剔除了非内生真菌,提高了成功率;二是从 5个采样点采集红豆杉 3个部位样品,通过分离纯化,获得了 491个内生真菌,保证了内生真菌的多样性;三是以前的研究仅以筛选产紫杉醇的内生真菌为目的,本研究除筛选产紫杉醇的内生真菌外,还筛选紫杉醇生物合成途径的前体巴卡亭III和 10-DAB,扩大了筛洗范围。

从以往的研究来看,除从红豆杉属植物中分离

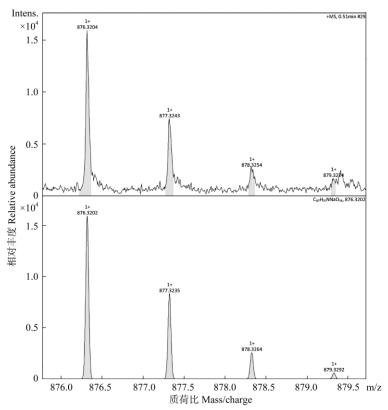


图 4 高分辨质谱检测 SJ17 样品提取液中的紫杉醇。上: SJ17 菌株; 下: 质谱数据库。

Fig. 4 Taxol in extract of SJ17 strain detected by high resolution mass spectrum. Upper: SJ17 strain; Lower: Database of mass spectrum.

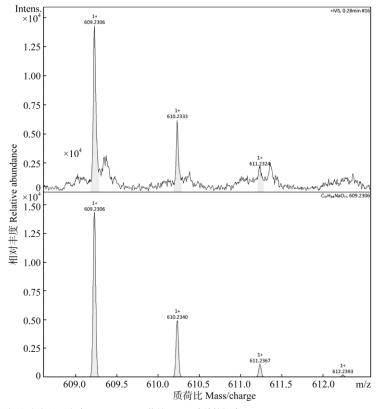


图 5 高分辨质谱检测 JA13 样品提取液中的巴卡亭Ⅲ。上: JA13 菌株; 下: 质谱数据库。

Fig. 5 Baccatin III in extract of JA13 strain detected by high resolution mass spectrum. Upper: JA3 strain; Lower: Database of mass spectrum.

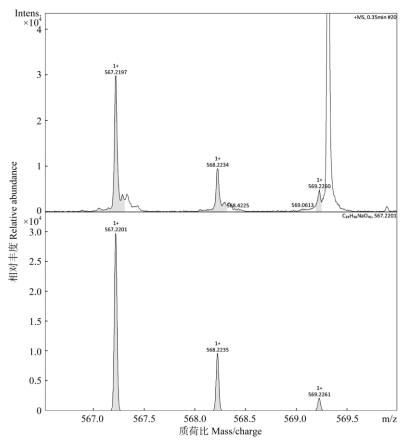


图 6 高分辨质谱检测 JA5 样品提取液中的 10-DAB。上: JA5 菌株; 下: 质谱数据库。

Fig. 6 10-DAB in extract of JA5 strain detected by high resolution mass spectrum. Upper: JA5 strain; Lower: Database of mass spectrum.

获得产紫杉醇的内生真菌外, 从非红豆杉植物中也 分离获得了较多产紫杉醇的内生真菌[16]。但非红豆 杉植物本身不像红豆杉属植物可产紫杉醇,为何会 出现这种情况?显然,不能用内生真菌与红豆杉植 物长期共生获得红豆杉的紫杉醇生物合成途径基 因来解释。最近的基因组学研究表明,非红豆杉属 植物欧榛(Corylus avellana)的内生青霉菌(Penicillium aurantiogriseum)和红豆杉产紫杉醇的内生 真菌各自具有独立的紫杉醇生物合成进化途径[17]。 目前,对内生真菌中的紫杉醇生物合成途径了解得 较少。我们认为,不排除红豆杉的内生真菌具有独 立的紫杉醇合成进化途径,但更多的是内生真菌通 过长期共生,获得红豆杉的紫杉醇生物合成基因。 南方红豆杉中产紫杉烷的内生真菌是否具有与红 豆杉一致的紫杉醇生物合成途径,需要在生化和分 子水平上深入研究。我们相信,还有许多内生真菌 还具有紫杉醇生物合成途径的中间产物,仅仅是没 有检测而已。随着对产紫杉烷内生真菌的基因组 学、生化和分子生物学的深入研究, 可阐明内生真 菌中紫杉醇生物合成途径与红豆杉中紫杉醇生物 合成途径的关系,也有利于阐明产紫杉烷的内生真 菌与红豆杉属植物或非红豆杉属植物的共生关系。

对于内生真菌中紫杉醇或紫杉烷的检测主要 是基于 HPLC 或 LC-MS 技术, 而 LC-MS 被认为是 一种更可靠的分析检测技术。传统的薄层层析检测 和紫外吸收分析由于方法本身的局限性以及可靠 性受到限制,而成为一种辅助性筛选方法。由于目 前还尚未建立一种可靠的高通量筛选产紫杉醇或 紫杉烷的内生真菌方法,因此,用传统方法对本研 究的 491 株内生真菌进行初步筛选,工作量很大。 另一方面,利用 HPLC 进行分析检测,既可用于产 紫杉烷的内生真菌进行复筛,也可用于测定样品中 的紫杉醇或紫杉烷的含量。从这种意义上来说,薄 层层析初筛显得很有必要。与传统质谱相比, 对紫 杉烷的检测采用高分辨质谱,分辨力更高,省去了 HPLC 分析, 且结果更可靠[18-19]。事实上, 对内生 真菌中的紫杉醇或紫杉烷的检测,无论使用哪一种 方法均是一种基于现代分析检测技术的"间接"方 法。到目前为止,还没有从内生真菌中分离获得足够纯的紫杉醇或紫杉烷类化合物,对其进行核磁共振分析等波谱学分析,以及进行结构解析,从而"直接"确定内生真菌中的紫杉醇或紫杉烷的分子结构。

参考文献

- [1] WANI M C, TAYLOR H L, WALL M E, et al. Plant antitumor agents: VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from *Taxus brevifolia* [J]. J Amer Chem Soc, 1971, 93(9): 2325– 2327. doi: 10.1021/ja00738a045.
- [2] STIERLE A, STROBEL G, STIERLE D. Taxol and taxane production by *Taxomyces andreanae*, an endophytic fungus of Pacific yew [J]. Science, 1993, 260(5105): 214–216. doi: 10.1126/science.8097061.
- [3] WALKER K, CROTEAU R. Molecular cloning of a 10-deacetylbaccatin III-10-O-acetyl transferase cDNA from *Taxus* and functional expression in *Escherichia coli* [J]. Proc Natl Acad Sci USA, 2000, 97(2): 583–587. doi: 10.1073/pnas.97.2.583.
- [4] WALKER K, FUJISAKI S, LONG R, et al. Molecular cloning and heterologous expression of the C-13 phenylpropanoid side chain-CoA acyltransferase that functions in taxol biosynthesis [J]. Proc Natl Acad Sci USA, 2002, 99(20): 12715–12720. doi: 10.1073/pnas.192463699.
- [5] WALKER K, LONG R, CROTEAU R. The final acylation step in taxol biosynthesis: cloning of the taxoid C13-side-chain N-benzoyltransferase from Taxus [J]. Proc Natl Acad Sci USA, 2002, 99(14): 9166– 9171. doi: 10.1073/pnas.082115799.
- [6] LEE Y H, LEE Y R, PARK C S, et al. Baccatin III, a precursor for the semisynthesis of paclitaxel, inhibits the accumulation and suppressive activity of myeloid-derived suppressor cells in tumor-bearing mice [J]. Inter Immunopharmacol, 2014, 21(2): 487–493. doi: 10.1016/j.intimp. 2014.06.012.
- [7] CHAKRAVARTHI B V, SUJAY R, KURIAKOSE G C, et al. Inhibition of cancer cell proliferation and apoptosis-inducing activity of fungal taxol and its precursor baccatin III purified from endophytic *Fusarium solani* [J]. Cancer Cell Int, 2013, 13(1): 105. doi: 10.1186/1475-2867-13-105.
- [8] YANG L, LIU J J, YANG D L, et al. Screening of endophytic fungi producing baccatin III from *Taxus yunnanensis* and preliminary optimization of the culture media [J]. Prog Mod Biomed, 2007, 7(5): 692–695. doi: 10.3969/j.issn.1673-6273.2007.05.017. 杨磊, 刘佳佳, 杨栋梁, 等. 红豆杉内生真菌中巴卡亭 III 产生菌的 筛选及培养基的初步优化 [J]. 现代生物医学进展, 2007, 7(5): 692–695. doi: 10.3969/j.issn.1673-6273.2007.05.017.
- [9] ZHENG W L, ZHOU X W, ZHU H F, et al. Identification and isolation of a baccatin III-producing endophytic fungus [J]. J Anhui Agri Sci,

- 2010, 38(25): 13612-13616. doi: 10.3969/j.issn.0517-6611.2010.25.024. 郑文龙,周选围,朱慧芳,等.一株产巴卡亭Ⅲ红豆杉内生真菌的分离与鉴定 [J]. 安徽农业科学, 2010, 38(25): 13612-13616. doi: 10.3969/j.issn.0517-6611.2010.25.024.
- [10] LI Y C, YANG J, ZHOU X R, et al. Isolation and identification of a 10-deacetyl baccatin-III-producing endophyte from *Taxus wallichiana* [J]. Appl Biochem Biotechn, 2015, 175(4): 2224–2231. doi: 10.1007/s 12010-014-1422-0.
- [11] JIAN Z Y, MENG L, XU G F, et al. Isolation of an endophytic fungus producing baccatin III from *Taxus wallichiana* var. *mairei* [J]. J Ind Microbiol Biotechn, 2013, 40(11): 1297–1302. doi: 10.1007/s10295-013-1320-4.
- [12] SREEKANTH D, SYED A, SARKAR S, et al. Production, purification and characterization of taxol and 10DAB III from a new endophytic fungus *Gliocladium* sp. isolated from the Indian yew tree, *Taxus* baccata [J]. J Microbiol Biotechn, 2009, 19(11): 1342–1347.
- [13] HEINIG U, SCHOLZ S, JENNEWEIN S. Getting to the bottom of taxol biosynthesis by fungi [J]. Fungal Div, 2013, 60(1): 161–170. doi: 10.1007/s13225-013-0228-7.
- [14] CROTEAU R, KETCHUM R E B, LONG R M, et al. Taxol biosynthesis and molecular genetics [J]. Phytochem Rev, 2006, 5(1): 75–97. doi: 10.1007/s11101-005-3748-2.
- [15] THORET S, GUÉRITTE F, GUÉNARD D, et al. Semisynthesis and biological evaluation of a novel D-seco docetaxel analogue [J]. Org Lett, 2006, 8(11): 2301–2304. doi: 10.1021/ol060531d.
- [16] GOND S K, KHARWAR R N, WHITE Jr J F. Will fungi be the new source of the blockbuster drug taxol [J]. Fungal Biol Rev, 2014, 28(4): 77–84. doi: 10.1016/j.fbr.2014.10.001.
- [17] YANG Y F, ZHAO H N, BARRERO R A, et al. Genome sequencing and analysis of the paclitaxel-producing endophytic fungus *Penicillium* aurantiogriseum NRRL 62431 [J]. BMC Genom, 2014, 15: 69. doi: 10. 1186/1471-2164-15-69.
- [18] LIU M Z. Isolation of paclitaxel-producing endofungus from *Taxus chinensis* var. *mairei* [J]. J Trop Subtrop Bot, 2011, 19(4): 360–364. doi: 10.3969//j.issn.1005–3395.2011.04.014. 刘明志. 南方红豆杉产紫杉醇内生真菌的分离 [J]. 热带亚热带植物学报, 2011, 19(4): 360–364. doi: 10.3969//j.issn.1005–3395.2011.04.014.
- [19] LIU M Z, DUAN Z G, LÜ Z C, et al. Identification of a high paclitaxel-producing endophytic fungus J11 [J]. Chin J Biochem Mol Biol, 2014, 30(10): 1031–1038. doi: 10.13865/j.cnki.cjbmb.2014.10.12. 刘明志, 段中岗, 吕镇城, 等. 高产紫杉醇内生真菌 J11 的鉴定 [J]. 中国生物化学与分子生物学报, 2014, 30(10): 1031–1038. doi: 10.13865/j.cnki.cjbmb.2014.10.12.