中国热带珊瑚岛优势木本植物抗风桐和草海桐的水分适应策略解析
作者:
基金项目:

国家重点研发计划项目(2021YFC3100401);国家自然科学基金项目(32371575);中国科学院华南植物园青年人才专项(QNXM-01);中国科学院重点部署项目(KGFZD-135-19-08)资助


Hydraulic Adaptation Strategies of Dominant Woody Plants Pisonia grandis and Scaevola sericea on Tropical Coral Islands of China
Author:
  • TANG Weize

    TANG Weize

    Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;University of Chinese Academy of Sciences, Beijing 100049, China;South China National Botanical Garden, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Qin

    LI Qin

    Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;University of Chinese Academy of Sciences, Beijing 100049, China;South China National Botanical Garden, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Haoping

    ZHANG Haoping

    Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;University of Chinese Academy of Sciences, Beijing 100049, China;South China National Botanical Garden, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIN Yi

    JIN Yi

    Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Qiang

    LI Qiang

    School of Tropical Medicine, Hainan Medical University, Haikou 571199, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YIN Deyi

    YIN Deyi

    Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YE Qing

    YE Qing

    Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Hui

    LIU Hui

    Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    植物水力性状能够反映植物对不同水分条件的适应能力,研究热带珊瑚岛特殊生境下优势植物的水力功能特征对深入理解热带珊瑚岛植物的水分适应策略,从而选择热带珊瑚岛植被构建和恢复的适生物种具有重要意义。该研究以中国热带珊瑚岛生境中2种优势适生木本植物:抗风桐(Pisonia grandis)和草海桐(Scaevola sericea)为研究对象,比较了其叶片和枝条的水力性状,并分析了其水分适应策略。结果表明, 抗风桐的叶片栓塞抗性、枝条边材比导水率和叶片膨压丧失点显著高于草海桐,而枝条栓塞抗性、叶片导水率、边材密度和叶面积边材面积比均显著低于草海桐。抗风桐的叶片具有比枝条更强的抗栓塞能力,对水分胁迫敏感,但同时选择以高效的枝干水分运输来满足叶片高蒸腾需求的充足供水。草海桐枝条与叶片则存在水力脆弱性分区,在面临水分胁迫时叶片充当“安全阀”以保证枝干木质部的水力安全。抗风桐与草海桐能够通过协调叶片与枝条水力性状采取不同的水分适应策略,从而更好地适应热带珊瑚岛的特殊生境。

    Abstract:

    Plant hydraulic traits can reflect the adaptability of plants to different water conditions. It is important to study the hydraulic traits of dominant plants in the special habitat of tropical coral islands for a deep understanding of the hydraulic adaptation strategies of tropical coral island plants, and for selecting suitable tree species for tropical coral island vegetation construction and restoration. Thus, the leaf and branch hydraulic traits of two representative dominant tree species in the habitat of tropical coral islands of China, i.e., Pisonia grandis and Scaevola sericea, were measured, and their hydraulic adaptation strategies were compared and analyzed. The results showed that the leaf embolism resistance, leaf turgor point and branch specific xylem conductivity of P. grandis were significantly higher than those of S. sericea, but the values of branch embolism resistance, leaf hydraulic conductance, sapwood density and leaf to stem area ratio were significantly lower than those of S. sericea. Furthermore, leaves of P. grandis were more resistant to embolism than branches, and were sensitive to water stress. Meanwhile, high water transport efficiency in branches of P. grandis provided sufficient water to ensure the high transpiration of the leaves. On the other hand, there was a significant hydraulic vulnerability segmentation between leaves and branches of S. sericea. The leaves of S. sericea could act as “safety valves” to protect branch hydraulic pathway from dysfunction. Pisonia grandis and S. sericea could adapt to the special habitats of tropical coral islands by coordinating the water transport efficiency and safety of leaves and branches and adopting different hydraulic strategies.

    参考文献
    [1] LI J, LIU N, REN H, et al. Ecological adaptability of seven plant species to tropical coral island habitat[J]. Ecol Environ Sci, 2016, 25(5): 790-794.[李婕, 刘楠, 任海, 等. 7种植物对热带珊瑚岛环境的生态适应性[J]. 生态环境学报, 2016, 25(5): 790-794. doi: 10.16258/j.cnki.1674-5906.2016.05.009.]
    [2] LIN Y X, LIU H, HE P C, et al. Physiological and biochemical responses of three species to environment stresses of tropical coral islands[J]. J Trop Subtrop Bot, 2017, 25(6): 562-568.[林忆雪, 刘慧, 贺鹏程, 等. 三种适生植物对热带珊瑚岛胁迫生境的生理生化响应[J]. 热带亚热带植物学报, 2017, 25(6): 562-568. doi: 10.11926/jtsb.3755.]
    [3] YOU C J, HOU P X, DENG C F, et al. Investigation of tourism resources in Xisha Islands[J]. Resour Sci, 2015, 37(8): 1609-1620.[游长江, 侯佩旭, 邓灿芳, 等. 西沙群岛旅游资源调查与评价[J]. 资源科学, 2015, 37(8): 1609-1620.]
    [4] XU T Y, NIU X, WANG B. Recent advances in plant leaf hydraulic traits[J]. Terr Ecosyst Conserv, 2022, 2(2): 83-91.[许庭毓, 牛香, 王兵. 植物叶片水力性状研究综述[J]. 陆地生态系统与保护学报, 2022, 2(2): 83-91. doi: 10.12356/j.2096-8884.2022-0005.]
    [5] ZHU S D, CHEN Y J, CAO K F, et al. Interspecific variation in branch and leaf traits among three Syzygium tree species from different successional tropical forests[J]. Funct Plant Biol, 2015, 42(4): 423-432. doi: 10.1071/FP14201.
    [6] CHOAT B, BRODRIBB T J, BRODERSEN C R, et al. Triggers of tree mortality under drought[J]. Nature, 2018, 558(7711): 531-539. doi: 10. 1038/s41586-018-0240-x.
    [7] ZHOU H H, LI W H, AYUP Mubarek, et al. Xylem hydraulic conductivity and embolism properties of desert riparian forest plants and its response to drought stress[J]. Chin J Plant Ecol, 2012, 36(1): 19-29.[周洪华, 李卫红, 木巴热克·阿尤普, 等. 荒漠河岸林植物木质部导水与栓塞特征及其对干旱胁迫的响应[J]. 植物生态学报, 2012, 36(1): 19-29. doi: 10.3724/SP.J.1258.2012.00019.]
    [8] BARTLETT M K, SCOFFONI C, SACK L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis[J]. Ecol Lett, 2012, 15(5): 393-405. doi: 10.1111/j.1461-0248.2012.01751.x.
    [9] BLACKMAN C J, BRODRIBB T J, JORDAN G J. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms[J]. New Phytol, 2010, 188(4): 1113-1123. doi: 10.1111/j.1469-8137.2010.03439.x.
    [10] GLEASON S M, WESTOBY M, JANSEN S, et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species[J]. New Phytol, 2016, 209(1): 123-136. doi: 10.1111/nph.13646.
    [11] TYREE M T, EWERS F W. The hydraulic architecture of trees and other woody plants[J]. New Phytol, 1991, 119(3): 345-360. doi: 10. 1111/j.1469-8137.1991.tb00035.x.
    [12] BUCCI S J, SCHOLZ F G, CAMPANELLO P I, et al. Hydraulic differences along the water transport system of South American Nothofagus species: Do leaves protect the stem functionality?[J]. Tree Physiol, 2012, 32(7): 880-893. doi: 10.1093/treephys/tps054.
    [13] WHITEHEAD D, JARVIS P G. Coniferous forests and plantations[M]//KOZLOWSKI T T. Water Deficits and Plant Growth, VI. New York: Academic Press, 1981: 49-152.
    [14] ZHU S D, LIU H, XU Q Y, et al. Are leaves more vulnerable to cavitation than branches?[J]. Funct Ecol, 2016, 30(11): 1740-1744. doi: 10.1111/1365-2435.12656.
    [15] CHAVE J, COOMES D, JANSEN S, et al. Towards a worldwide wood economics spectrum[J]. Ecol Lett, 2009, 12(4): 351-366. doi: 10.1111/j.1461-0248.2009.01285.x.
    [16] MENCUCCINI M, MANZONI S, CHRISTOFFERSEN B. Modelling water fluxes in plants: From tissues to biosphere[J]. New Phytol, 2019, 222(3): 1207-1222. doi: 10.1111/nph.15681.
    [17] REN H, JIAN S G, ZHANG Q M, et al. Plants and vegetation on South China Sea Islands[J]. Ecol Environ Sci, 2017, 26(10): 1639-1648.[任海, 简曙光, 张倩媚, 等. 中国南海诸岛的植物和植被现状[J]. 生态环境学报, 2017, 26(10): 1639-1648. doi: 10.16258/j.cnki.1674-5906.2017.10.001.]
    [18] YU X C, LIANG H Z, CHEN S Y, et al. Multiple shoot proliferation and plant regeneration in Pisonia grandis[J]. Guihaia, 2021, 41(6): 890-896.[于昕塍, 梁韩枝, 陈双艳, 等. 抗风桐的丛生芽诱导与再生[J]. 广西植物, 2021, 41(6): 890-896. doi: 10.11931/guihaia.gxzw 202004015.]
    [19] WANG J. Breeding and mixed planting of local tree species Calophyllum inophyllum and Scaevola sericea in coastal shelterbelt on Hainan Island[D]. Haikou: Hainan Normal University, 2015.[王瑾. 海南岛海岸乡土树种红厚壳、草海桐的育苗和在海防林下混交种植的研究[D]. 海口: 海南师范大学, 2015.]
    [20] XU B B. Study on drought and saline-alkaline resistance of Scaevola sericea[D]. Guangzhou: Zhongkai University of Agriculture and Engineering, 2019.[徐贝贝. 草海桐的抗干旱和盐碱性研究[D]. 广州: 仲恺农业工程学院, 2019.]
    [21] XU B B, LIU N, REN H, et al. Stress resistance biological characterristics of Scaevola sericea in Paracel Islands[J]. Guihaia, 2018, 38(10): 1277-1285.[徐贝贝, 刘楠, 任海, 等. 西沙群岛草海桐的抗逆生物学特性[J]. 广西植物, 2018, 38(10): 1277-1285. doi: 10.11931/guihaia.gxzw201711012.]
    [22] HAN S S, LIU S X, MO X G, et al. Soil water dynamics and water balance on a tropical coral island[J]. Hydrol Process, 2021, 35(12): e14415. doi: 10.1002/hyp.14415.
    [23] WANG C, ZHANG H, LIU H, et al. Application of a trait-based species screening framework for vegetation restoration in a tropical coral island of China[J]. Funct Ecol, 2020, 34(6): 1193-1204. doi: 10.1111/1365-2435.13553.
    [24] PAMMENTER N W, VAN DER WILLIGEN C. A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation[J]. Tree Physiol, 1998, 18(8-9): 589-593. doi: 10.1093/treephys/18.8-9.589.
    [25] EWERS F W, FISHER J B. Techniques for measuring vessel lengths and diameters in stems of woody plants[J]. Am J Bot, 1989, 76(5): 645-656. doi: 10.1002/j.1537-2197.1989.tb11360.x.
    [26] TYREE M T, HAMMEL H T. The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique[J]. J Exp Bot, 1972, 23(1): 267-282. doi: 10.1093/jxb/23.1.267.
    [27] SCHULTE P J, HINCKLEY T M. A comparison of pressure-volume curve data analysis techniques[J]. J Exp Bot, 1985, 36(10): 1590-1602. doi: 10.1093/jxb/36.10.1590.
    [28] BRODRIBB T J, HOLBROOK N M. Changes in leaf hydraulic conductance during leaf shedding in seasonally dry tropical forest[J]. New Phytol, 2003, 158(2): 295-303. doi: 10.1046/j.1469-8137.2003. 00736.x.
    [29] LIU H, GLEASON S M, HAO G Y, et al. Hydraulic traits are coordinated with maximum plant height at the global scale[J]. Sci Adv, 2019, 5(2): eaav1332. doi: 10.1126/sciadv.aav1332.
    [30] TYREE M T, COCHARD H, CRUIZIAT P, et al. Drought-induced leaf shedding in walnut: Evidence for vulnerability segmentation[J]. Plant Cell Environ, 1993, 16(7): 879-882. doi: 10.1111/j.1365-3040.1993. tb00511.x.
    [31] BUCCI S J, SCHOLZ F G, GOLDSTEIN G, et al. Soil water availability and rooting depth as determinants of hydraulic architecture of Patagonian woody species[J]. Oecologia, 2009, 160(4): 631-641. doi: 10.1007/s00442-009-1331-z.
    [32] MCCULLOH K A, JOHNSON D M, MEINZER F C, et al. The dynamic pipeline: Hydraulic capacitance and xylem hydraulic safety in four tall conifer species[J]. Plant Cell Environ, 2014, 37(5): 1171-1183. doi: 10.1111/pce.12225.
    [33] GUYOT G, SCOFFONI C, SACK L. Combined impacts of irradiance and dehydration on leaf hydraulic conductance: Insights into vulnerability and stomatal control[J]. Plant Cell Environ, 2012, 35(5): 857-871. doi: 10.1111/j.1365-3040.2011.02458.x.
    [34] PINEDA-GARCIA F, PAZ H, MEINZER F C. Drought resistance in early and late secondary successional species from a tropical dry forest: The interplay between xylem resistance to embolism, sapwood water storage and leaf shedding[J]. Plant Cell Environ, 2013, 36(2): 405-418. doi: 10.1111/j.1365-3040.2012.02582.x.
    [35] SCOFFONI C, MCKOWN A D, RAWLS M, et al. Dynamics of leaf hydraulic conductance with water status: Quantification and analysis of species differences under steady state[J]. J Exp Bot, 2012, 63(2): 643-658. doi: 10.1093/jxb/err270.
    [36] ARITSARA A N A, WANG S, LI B N, et al. Divergent leaf and fine root “pressure-volume relationships” across habitats with varying water availability[J]. Plant Physiol, 2022, 190(4): 2246-2259. doi: 10.1093/plphys/kiac403.
    [37] LI R H, ZHU S D, CHEN H Y H, et al. Are functional traits a good predictor of global change impacts on tree species abundance dynamics in a subtropical forest?[J]. Ecol Lett, 2015, 18(11): 1181-1189. doi: 10.1111/ele.12497.
    [38] MEINZER F C, JOHNSON D M, LACHENBRUCH B, et al. Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance[J]. Funct Ecol, 2009, 23(5): 922-930. doi: 10.1111/j.1365-2435.2009.01577.x.
    [39] ZANNE A E, WESTOBY M, FALSTER D S, et al. Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity[J]. Am J Bot, 2010, 97(2): 207-215. doi: 10.3732/ajb.0900178.
    [40] CLARK D A, CLARK D B. Getting to the canopy: Tree height growth in a neotropical rain forest[J]. Ecology, 2001, 82(5): 1460-1472. doi: 10.1890/0012-9658(2001)082[1460:GTTCTH]2.0.CO;2.
    [41] FALSTER D S, BRÄNNSTRÖM Å, DIECKMANN U, et al. Influence of four major plant traits on average height, leaf‐area cover, net primary productivity, and biomass density in single‐species forests: A theoretical investigation[J]. J Ecol, 2011, 99(1): 148-164. doi: 10. 1111/j.1365-2745.2010.01735.x.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

唐玮泽,李沁,张浩萍,金益,李强,殷德意,叶清,刘慧.中国热带珊瑚岛优势木本植物抗风桐和草海桐的水分适应策略解析[J].热带亚热带植物学报,2024,32(1):1~9

复制
分享
文章指标
  • 点击次数:279
  • 下载次数: 800
  • HTML阅读次数: 308
  • 引用次数: 0
历史
  • 收稿日期:2023-04-19
  • 在线发布日期: 2024-01-26
  • 出版日期: 2024-01-20
文章二维码