铁皮石斛和重唇石斛及其杂交子代花的挥发性成分分析
作者:
基金项目:

国家自然科学基金项目(31501802);福建省自然科学基金项目(2017J01153);三明市科技专项(2020-N-6)资助


Volatile Components in Flowers of Dendrobium officinale, D. hercoglossum and Their Hybrids
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • | | | |
  • 文章评论
    摘要:

    为阐明铁皮石斛和重唇石斛及其杂交后代14L-3、14L-6、14L-7和14L-9花挥发性成分的变化,采用静态顶空气相色谱-质谱(GC-MS)联用技术对石斛花进行检测。结果表明,从石斛花中检测出81种挥发性成分,包括烯、酮、醛、烷几大类,铁皮石斛、重唇石斛、14L-3、14L-6、14L-7和14L-9分别有23、12、21、33、23和35种。铁皮石斛花的主成分是α-蒎烯,重唇石斛花是2-十五烷酮,4个子代花中均含有这2种来自亲本的特征成分,α-蒎烯是子代共同的主成分。亲本和子代石斛花共有成分是正己醛。子代14L-3、14L-6、14L-9均与母本铁皮石斛相似性高,相似性以14L-3>14L-6>14L-9,与父本差异性大。14L-7与亲本相似度最均衡。这为石斛育种研究提供了指导。

    Abstract:

    To clarify the changes in volatile components of Dendrobium officinale, D. hercoglossum and their hybrid strains (14L-3, 14L-6, 14L-7 and 14L-9), their flowers were detected by static headspace combined with gas chromatography-mass spectrometry (GC-MS) technology. The results showed that there were 81 volatile components detected, including olefins, ketones, aldehydes, and alkanes. Among them, there are 23 compounds in D. officinale, 12 in D. hercoglossum, 21 in 14L-3, 33 in14L-6, 23 in 14L-7, and 35 in 14L-9. The main component in D. officinale flower was α-pinene, and that in D. hercoglossum was 2-pentadecanone. α-Pinene was the main component common in the four hybrids. The parents and hybrids contain hexanal. The hybrids 14L-3, 14L-6, and 14L-9 had high similarity with the female parent D. officinale in the order of 14L-3>14L-6>14L-9, they are quite different from the male parent D. hercoglossum. 14L-7 has the most balanced similarity with the parents. Therefore, these would provide guidance for breeding of Dendrobium.

    参考文献
    [1] TAN D P, LU A J, LING L, et al. Comparative study on Dendrobium officinale of different attached trees based on UPLC-MS with principal component anlysis[J]. J Zunyi Med Univ, 2020, 43(2):151-154. doi:10.14169/j.cnki.zunyixuebao.2020.0031. 谭道鹏,陆安静,凌蕾,等.基于UPLC-MS主成分分析的不同树种附生铁皮石斛对比研究[J].遵义医科大学学报, 2020, 43(2):151-154. doi:10.14169/j.cnki.zunyixuebao.2020.0031.
    [2] MA P, ZHAO M, WANG B L. Effects of different media on seed germination and strong seedling rooting of Dendrobium candidum[J]. J Anhui Agric Sci, 2021, 49(1):154-156. doi:10.3969/j.issn.0517-6611.2021.01.041. 马盼,赵萌,王宝玲.不同培养基对铁皮石斛种子萌发和壮苗生根的影响[J].安徽农业科学, 2021, 49(1):154-156. doi:10.3969/j.issn. 0517-6611.2021.01.041.
    [3] QU J X, HE Y X, SUN Z R, et al. Comparison of amino acids and volatile constituents in four kinds of Dendrobium flowers[J]. Mod Chin Med, 2018, 20(4):387-394. doi:10.13313/j.issn.1673-4890.20170904003. 曲继旭,贺雨馨,孙志蓉,等.四种石斛花氨基酸和挥发性成分比较[J].中国现代中药, 2018, 20(4):387-394. doi:10.13313/j.issn. 1673-4890.20170904003.
    [4] YANG X B, WANG Y Q, XIE Y, et al. Analysis of aroma components in Dendrobium fimbriatum Hook. flower by SPME-GC-MS[J]. Det Cosmet, 2019, 42(8):40-43. doi:10.3969/j.issn.1006-7264.2019.08. 011. 杨晓蓓,王雅琴,谢勇,等.顶空固相微萃取和气相色谱-质谱联用分析流苏石斛花的香气成分[J].日用化学品科学, 2019, 42(8):40-43. doi:10.3969/j.issn.1006-7264.2019.08.011.
    [5] WU Y L, HUANG S H, HE C M, et al. Dendrobium officinale flower extraction mitigates alcohol-induced liver injury in mice:Role of antisteatosis, antioxidative, and anti-inflammatory[J]. Evid-Based Comple Alternat Med, 2020, 2020:1421853. doi:10.1155/2020/1421853.
    [6] LI L Z, LEI S S, LI B, et al. Dendrobium officinalis flower improves learning and reduces memory impairment by mediating antioxidant effect and balancing the release of neurotransmitters in senescent rats[J]. Comb Chem High Throughput Screen, 2020, 23(5):402-410. doi:10.2174/1386207323666200407080352.
    [7] LEI S S, LÜ G Y, JIN Z W, et al. Effect of extracts from Dendrobii officinalis flos on hyperthyroidism Yin deficiency mice[J]. China J Chin Mat Med, 2015, 40(9):1793-1797. doi:10.4268/cjcmm20150931. 雷珊珊,吕圭源,金泽武,等.铁皮石斛花提取物对甲亢型阴虚小鼠的影响[J].中国中药杂志, 2015, 40(9):1793-1797. doi:10.4268/cjcmm20150931.
    [8] JIANG J L. Character analysis of hybrid offspring of Dendrobium officinale and Dendrobium huoshanense[J]. Chin J Trop Crops, 2020, 41(8):1574-1581. doi:10.3969/j.issn.1000-2561.2020.08.010. 江金兰.铁皮石斛与霍山石斛杂交后代性状分析[J].热带作物学报, 2020, 41(8):1574-1581. doi:10.3969/j.issn.1000-2561.2020.08.010.
    [9] YE W, JIANG J L, LI Y Q, et al. Method for rapidly cultivating purified strain of Dendrobium candidum with red leaves and red stems:CN, 108887174B[P]. 2020-06-26. 叶炜,江金兰,李永清,等.一种快速培育红叶红杆铁皮石斛纯化株系的方法:中国, 108887174B[P]. 2020-06-26.
    [10] BERGMAN M E, DAVIS B, PHILLIPS M A. Medically useful plant terpenoids:Biosynthesis, occurrence, and mechanism of action[J]. Molecules, 2019, 24(21):3961. doi:10.3390/molecules24213961.
    [11] KIM T, SONG B, CHO K S, et al. Therapeutic potential of volatile terpenes and terpenoids from forests for inflammatory diseases[J]. Int J Mol Sci, 2020, 21(6):2187. doi:10.3390/ijms21062187.
    [12] MUHSEEN Z T, LI G L. Promising terpenes as natural antagonists of cancer:An in-silico approach[J]. Molecules, 2020, 25(1):155. doi:10. 3390/molecules25010155.
    [13] ALVES Q L, SILVA D F. d-Limonene:A promising molecule with bradycardic and antiarrhythmic potential[J]. Arq Bras Cardiol, 2019, 113(5):933-934. doi:10.5935/ABC.20190233.
    [14] JANSEN C, SHIMODA L M N, KAWAKAMI J K, et al. Myrcene and terpene regulation of TRPV1[J]. Channels, 2019, 13(1):344-366. doi:10.1080/19336950.2019.1654347.
    [15] HAN S N. Antitumor active ingredients identification from Zantho-xylum essential oil based on composition-activity relationship[D]. Tianjin:Tianjin University, 2014:76-77. doi:10.7666/d.D636885. 韩胜男.基于中药组效关系的花椒挥发油抗肿瘤活性组分的研究[D].天津:天津大学, 2014:76-77. doi:10.7666/d.D636885.
    [16] GAN Z L, NI Y Y. Antioxidant capacity of γ-terpinene in vitro and vivo[J]. Sci Technol Food Ind, 2019, 40(6):100-105. doi:10.13386/j. issn1002-0306.2019.06.017. 甘芝霖,倪元颖. γ-萜品烯的体内外抗氧化性研究[J].食品工业科技, 2019, 40(6):100-105. doi:10.13386/j.issn1002-0306.2019. 06.017.
    [17] HU J H, HAN J, LI Q R, et al. Synthesis and comprehensive utilization of α-pinene derivatives[J]. Shandong Chem Ind, 2014, 43(6):64-68. doi:10.3969/j.issn.1008-021X.2014.06.022. 胡建华,韩嘉,李倩茹,等. α-蒎烯衍生物的合成及其综合利用[J].山东化工, 2014, 43(6):64-68. doi:10.3969/j.issn.1008-021X.2014. 06.022.
    [18] LIU Z K, CUI J, LI Y X, et al. Transcriptome characteristics of pine wood nematode in response to α-and β-pinene stress[J]. J NE For Univ, 2020, 48(5):93-98. doi:10.3969/j.issn.1000-5382.2020.05.018. 刘振凯,崔晶,理永霞,等. α-和β-蒎烯胁迫下松材线虫转录组特征[J].东北林业大学学报, 2020, 48(5):93-98. doi:10.3969/j.issn.1000-5382.2020.05.018.
    [19] HOU J, ZHNG Y, ZHU Y J, et al. α-Pinene induces apoptotic cell death via caspase activation in human ovarian cancer cells[J]. Med Sci Monit, 2019, 25:6631-6638. doi:10.12659/MSM.916419.
    [20] SALEHI B, UPADHYAY S, ORHAN I E, et al. Therapeutic potential of α-and β-pinene:A miracle gift of nature[J]. Biomolecules, 2019, 9(11):738. doi:10.3390/biom9110738.
    [21] ZAMYAD M, ABBASNEJAD M, ESMAEILI-MAHANI S, et al. The anticonvulsant effects of Ducrosia anethifolia (Boiss) essential oil are produced by its main component alpha-pinene in rats[J]. Arq Neuro-Psiquiatr, 2019, 77(2):106-114. doi:10.1590/0004-282x20180147.
    [22] WEI F X, SHANG L, GAO H, et al. Study on the anti-adenovirus mechanism of α-pinene[J]. J Harbin Med Univ, 2020, 54(3):248-252. doi:10.3969/j.issn.1000-1905.2020.03.006. 魏凤香,商蕾,高虹,等. α-蒎烯抗腺病毒作用机制研究[J].哈尔滨医科大学学报, 2020, 54(3):248-252. doi:10.3969/j.issn.1000-1905. 2020.03.006.
    [23] MWERESA C K, MUKABANA W R, OMUSULA P, et al. Enhancing attraction of African Malaria vectors to a synthetic odor blend[J]. J Chem Ecol, 2016, 42(6):508-516. doi:10.1007/s10886-016-0711-1.
    [24] KIRILLOV V, STIKHAREVA T, SULEIMEN Y, et al. Chemical composition of the essential oil from carnation coniferous (Dianthus acicularis Fisch. ex Ledeb) growing wild in northern Kazakhstan[J]. Nat Prod Res, 2017, 31(1):117-123. doi:10.1080/14786419.2016. 1214832.
    [25] SIYUMBWA S N, EKEUKU S O, AMINI F, et al. Wound healing and antibacterial activities of 2-pentadecanone in streptozotocin-induced type 2 diabetic rats[J]. Phcog Mag, 2019, 15(62):71-77.
    [26] LEE D K, NA E, PARK S, et al. In vitro tracking of intracellular metabolism-derived cancer volatiles via isotope labeling[J]. ACS Cent Sci, 2018, 4(8):1037-1044. doi:10.1021/acscentsci.8b00296.
    [27] CAO Q, WANG J J, DENG L L, et al. Effect of hexanal treatment on storage quality of navel orange[J]. Food Sci, 2015, 36(20):252-257. doi:10.7506/spkx1002-6630-201520049. 曹琦,王建军,邓丽莉,等.己醛处理对脐橙果实贮藏品质的影响[J].食品科学, 2015, 36(20):252-257. doi:10.7506/spkx1002-6630-201520049.
    [28] CAI P M, YI C D, JI Q E, et al. Attractiveness of 11 volatile com-pounds from host fruits to Drosophila suzukii(Matsumura)[J]. J Fujian Agric For Univ (Nat Sci), 2019, 48(3):285-290. doi:10.13323/j.cnki.j. fafu (nat.sci.).2019.03.002. 蔡普默,仪传冬,季清娥,等.寄主水果11种挥发性成分对斑翅果蝇的引诱效果[J].福建农林大学学报(自然科学版), 2019, 48(3):285-290. doi:10.13323/j.cnki.j.fafu (nat.sci.).2019.03.002.
    [29] LIU Y, XIE D S, XIONG Y, et al. Effects of combination of cineole with heptanal on oviposition choices of the potato tuber moth, Phthori-maea operculella[J]. Plant Prot, 2016, 42(3):99-103. doi:10.3969/j. issn.0529-1542.2016.03.016. 刘燕,谢冬生,熊焰,等.庚醛与桉叶油醇组合对马铃薯块茎蛾产卵选择的影响[J].植物保护, 2016, 42(3):99-103. doi:10.3969/j. issn.0529-1542.2016.03.016.
    [30] WANG Q. Transcriptional regulation of α-farnesene synthesis by MdMYC2 and MdERF3 in apple fruit[D]. Taian:Shandong Agricul-tural University, 2019:17. 王晴.苹果转录因子MdMYC2与MdERF3对α-法尼烯生物合成的转录调控[D].泰安:山东农业大学, 2019:17.
    [31] OUYANG Q L, JIA L, TAO N G, et al. Inhibitory effect of α-terpineol on Penicillium italicum[J]. Food Sci, 2014, 35(11):32-35. doi:10. 7506/spkx1002-6630-201411007. 欧阳秋丽,贾雷,陶能国,等. α-松油醇对意大利青霉的抑制作用[J].食品科学, 2014, 35(11):32-35. doi:10.7506/spkx1002-6630-201411007.
    [32] LI A X, HOU X C, ZENG J J, et al. Chemical composition analysis of eucalyptus essential oil and allelopathic effects of α-terpineol[J]. Chin J Appl Ecol, 2020, 31(7):2195-2201. doi:10.13287/j.1001-9332.202007.002. 李奥欣,侯新村,曾加佳,等.桉树油化学成分分析及α-松油醇的化感作用[J].应用生态学, 2020, 31(7):2195-2201. doi:10.13287/j. 1001-9332.202007.002.
    [33] CAO H, XU F, LU L, et al. GC-MS analysis of volatile components in flowers of four kinds of fragrant Dendrobium species[J]. Chin Agric Sci Bull, 2021, 37(13):56-62. 曹桦,许凤,陆琳,等. 4种香花型石斛花朵挥发性成分GC-MS分析[J].中国农学通报, 2021, 37(13):56-62.
    [34] WANG Y C, ZENG Y Y, LI Z J, et al. Aroma constituents in flower of Dendrobium hancockii and D. trigonopus based on SPME-GC-MS analysis[J]. For Res, 2020, 33(3):116-123. doi:10.13275/j.cnki.lykxyj. 2020.03.015. 王元成,曾艺芸,李振坚,等.细叶石斛和翅梗石斛花朵赋香成分的GC-MS分析[J].林业科学研究, 2020, 33(3):116-123. doi:10. 13275/j.cnki.lykxyj.2020.03.015.
    [35] SONG X M, WANG H X, MA C Y, et al. Analysis on volatile components from flower of Dendrobium nobile Lindl. by GC-MS[J]. J Food Sci Biotechnol, 2019, 38(9):133-138. doi:10.3969/j.issn.1673-1689.2019.09.019. 宋小蒙,王洪新,马朝阳,等. GC-MS分析金钗石斛花挥发性成分[J].食品与生物技术学报, 2019, 38(9):133-138. doi:10.3969/j.issn. 1673-1689.2019.09.019.
    [36] LI W J, LI J J, LI G F, et al. GC-MS analysis of volatile components of 4Dendrobium flowers[J]. J Chin Med Mat, 2015, 38(4):777-780. doi:10.13863/j.issn1001-4454.2015.04.032. 李文静,李进进,李桂锋,等. GC-MS分析4种石斛花挥发性成分[J].中药材, 2015, 38(4):777-780. doi:10.13863/j.issn1001-4454. 2015.04.032.
    [37] HUO X, ZHOU J H, YANG N J, et al. Determination of chemical constituents of essential oil from flower of Dendrobium candidum Wall. ex Lind1.[J]. Chin J Trad Chin Med Pharm, 2008, 23(8):735-737. 霍昕,周建华,杨迺嘉,等.铁皮石斛花挥发性成分研究[J].中华中医药杂志, 2008, 23(8):735-737.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

颜沛沛,周建金,叶炜,江金兰,王培育.铁皮石斛和重唇石斛及其杂交子代花的挥发性成分分析[J].热带亚热带植物学报,2022,30(4):558~566

复制
分享
文章指标
  • 点击次数:164
  • 下载次数: 366
  • HTML阅读次数: 512
  • 引用次数: 0
历史
  • 收稿日期:2021-07-26
  • 最后修改日期:2021-10-29
  • 在线发布日期: 2022-07-27
  • 出版日期: 2022-07-31
文章二维码