巨桉连栽对土壤微生物生物量和数量的影响
作者:
基金项目:

国家自然科学基金项目(41201296);国家"十二五"科技支撑计划项目(2010BACO1A11);长江上游生态安全协同创新中心开放基金项目资助


Effect of Continuous Planting of Eucalyptus grandis on Biomass and Number of Soil Microbes
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探讨巨桉连栽对土壤微生物生物量和数量的影响,采用时空互换法,研究了马尾松(Pinus massoniana)林和不同连栽代次的巨桉(Eucalyptus grandis)人工林的微生物生物量、数量与土壤理化性质的关系。结果表明,巨桉一代林的土壤微生物生物量碳、生物量氮和土壤真菌、细菌数量与马尾松林的差异不显著,放线菌数量则显著增加。随巨桉连栽代次增加,土壤微生物生物量碳、生物量氮和土壤细菌、放线菌、真菌数量均递减。回归分析表明,土壤全磷能独立解释微生物生物量氮、细菌和真菌数量71.7%、86.1%和63.0%的变异,与总孔隙度共同解释微生物生物量碳87.9%的变异,与全氮共同解释放线菌数量89.6%的变异。可见,土壤全磷较大程度解释了微生物的变化。

    Abstract:

    In order to understand the effect of continuous planting of Eucalyptus grandis on biomass and number of soil microbes, the relationships between soil microbial biomass, number of major microbial groups with soil physicochemical properties in Pinus massoniana forest and E. grandis plantations at different rotations were studied by using space-time interchange method. The results showed that the soil microbial biomass carbon, biomass nitrogen and number of bacteria and fungi in the first rotation plantations of E. grandis had not significant difference from those in P. massoniana forest, but the number of actinomycetes significantly increased. However, with the increasing rotation of Eucalyptus grandis continuous plantations, the soil microbial biomass carbon, biomass nitrogen and the number of bacteria, actinomycetes and fungi decreased. Stepwise regression analysis showed that soil total phosphorus could independently explain 71.7%, 86.1% and 63.0% variation of the microbial biomass nitrogen, the number of bacteria and fungi, respectively. Soil total phosphorus together with total porosity could explain 87.9% variation of microbial biomass carbon, and 89.6% variation of the number of actinomycetes together with total nitrogen. So, it could be concluded that soil total phosphorus well explained the variation of soil microbial characteristics in E. grandis plantations.

    参考文献
    [1] ARTURSSON V, FINLAY R D, JANSSON J K. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth[J]. Environ Microbiol, 2006, 8(1):1-10. doi:10.1111/j.1462-2920.2005.00942.x.
    [2] LEWIS D E, WHITE J R, WAFULA D, et al. Soil functional diversity analysis of a bauxite-mined restoration chronosequence[J]. Microb Ecol, 2010, 59(4):710-723. doi:10.1007/s00248-009-9621-x.
    [3] FAN S, YANG N. Comparsion of soil microbiology characteristics in five subtropical ecosystems[J]. J Trop Subtrop Bot, 2016, 24(6):635-641. doi:10.11926/j.issn.1005-3395.2016.06.006. 范适, 杨宁. 亚热带5个生态系统土壤微生物学性质比较[J]. 热带亚热带植物学报, 2016, 24(6):635-641. doi:10.11926/j.issn.1005-3395.2016.06.006.
    [4] LUO S M, HE D J, XIE Y L, et al. Effect of stand density on commu-nity structure and ecological effect of Eucalyptus urophylta×E. eamal-ducensis Plantation[J]. J Trop Subtrop Bot, 2010, 18(4):357-363. doi:10.3969/j.issn.1005-3395.2010.04.003. 罗素梅, 何东进, 谢益林, 等. 林分密度对尾赤桉人工林群落结构与生态效应的影响研究[J]. 热带亚热带植物学报, 2010, 18(4):357-363. doi:10.3969/j.issn.1005-3395.2010.04.003.
    [5] ZHU W K, CHEN S X, WANG Z C, et al. Ecological stoichiometric characteristrics of carbon, nitrogen and phosphorus in litter and soil of Eucalyptus urophylla×E. grandis Plantation at different forest ages[J]. J Trop Subtrop Bot, 2017, 25(2):127-135. doi:10.11926/jtsb.3665. 竹万宽, 陈少雄, 王志超, 等. 不同林龄尾巨桉人工林凋落物和土壤C、N、P化学计量特征[J]. 热带亚热带植物学报, 2017, 25(2):127-135. doi:10.11926/jtsb.3665.
    [6] ZHU L Y, WANG X H, CHEN F F, et al. Effects of the successive planting of Eucalyptus urophylla on soil bacterial and fungal commu-nity structure, diversity, microbial biomass, and enzyme activity[J]. Land Degrad Dev, 2019, 30(6):636-646. doi:10.1002/ldr.3249.
    [7] LEMENIH M, OLSSON M, KARLTUN E. Comparison of soil attributes under Cupressus lusitanica and Eucalyptus saligna estab-lished on abandoned farmlands with continuously cropped farmlands and natural forest in Ethiopia[J]. For Ecol Manage, 2004, 195(1/2):57-67. doi:10.1016/j.foreco.2004.02.055.
    [8] CHEN F L, ZHENG H, ZHANG K, et al. Soil microbial community structure and function responses to successive planting of Eucalyptus[J]. J Environ Sci, 2013, 25(10):2102-2111. doi:10.1016/S1001-0742(12)60319-2.
    [9] HAN Y S, WEI Y C, OUYANG Z Y, et al. Effects of continuous planting rotation on forest structural characteristics and water holding capacity of Eucalyptus plantations[J]. Acta Ecol Sin, 2008, 28(9):4609-4617. 韩艺师, 魏彦昌, 欧阳志云, 等. 连栽措施对桉树人工林结构及持水性能的影响[J]. 生态学报, 2008, 28(9):4609-4617.
    [10] YE S M, WEN Y G, YANG M, et al. Correlation analysis on biodi-versity and soil physical & chemical properties of Eucalyptus spp. plantations under successive rotation[J]. J Soil Water Conserv, 2010, 24(4):246-250,256. doi:10.13870/j.cnki.stbcxb.2010.04.051. 叶绍明, 温远光, 杨梅, 等. 连栽桉树人工林植物多样性与土壤理化性质的关联分析[J]. 水土保持学报, 2010, 24(4):246-250,256. doi:10.13870/j.cnki.stbcxb.2010.04.051.
    [11] WEN Y G, YE D, CHEN F, et al. The changes of understory plant diversity in continuous cropping system of Eucalyptus plantations, south China[J]. J For Res, 2010, 15(4):252-258. doi:10.1007/s10310-010-0179-8.
    [12] ZHANG K, ZHENG H, CHEN F L, et al. Changes in soil quality after converting Pinus to Eucalyptus plantations in southern China[J]. Solid Earth, 2015, 6(1):115-123. doi:10.5194/se-6-115-2015.
    [13] CHEN F L, ZHANG K, WANG Y, et al. Impacts of converting natural secondary forests to exotic Eucalyptus plantations on structure and function of soil microbial communities[J]. Acta Ecol Sin, 2018, 38(22):8070-8079. doi:10.5846/stxb201801060036. 陈法霖, 张凯, 王芸, 等. 引进种桉树人工林取代天然次生林对土壤微生物群落结构和功能的影响[J]. 生态学报, 2018, 38(22):8070-8079. doi:10.5846/stxb201801060036.
    [14] ARAÚJO A S F, SILVA E F L, NUNES L A P L, et al. The effect of converting tropical native savanna to Eucalyptus grandis forest on soil microbial biomass[J]. Land Degrad Dev, 2010, 21(6):540-545. doi:10.1002/ldr.993.
    [15] PULROLNIK K, de BARROS N F, SILVA I R, et al. Carbon and nitrogen pools in soil organic matter under eucalypt, pasture and savanna vegetation in Brazil[J]. Rev Bras Ciênc Solo, 2009, 33(5):1125-1136. doi:10.1590/S0100-06832009000500006.
    [16] WEI S Z, LI L, LUO X, et al. Soil enzyme activities and their rela-tionships to soil physicochemical properties in different successive rotation plantations of Eucalyptus grandis[J]. Chin J Appl Environ Biol, 2019, 25(6):1-10. doi:10.19675/j.cnki.1006-687x.2019.02029. 魏圣钊, 李林, 骆晓, 等. 不同连栽代次的巨桉(Eucalyptus grandis)人工林土壤酶活性及其与土壤理化性质的关系[J]. 应用与环境生物学报, 2019, 25(6):1-10. doi:10.19675/j.cnki.1006-687x.2019.02029.
    [17] Institute of Soil Science, Chinese Academy of Sciences. Soil Physico-chemical Analysis[M]. Shanghai:Shanghai Scientific & Technical Publishers, 1978:62-132. 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海:上海科学技术出版社, 1978:62-132.
    [18] WU J, JOERGENSEN R G, POMMERENING B, et al. Measurement of soil microbial biomass C by fumigation-extraction:An automated procedure[J]. Soil Biol Biochem, 1990, 22(8):1167-1169. doi:10.1016/0038-0717(90)90046-3.
    [19] Microbiology Laboratory, Institute of Soil Science, Chinese Academy of Sciences. Method of Soil Microorganism[M]. Beijing:Science Press, 1985:42-81. 中国科学院南京土壤研究所微生物室. 土壤微生物研究法[M]. 北京:科学出版社, 1985:42-81.
    [20] ELSER J J, DOBBERFUHL D R, MACKAY N A, et al. Organism size, life history, and N:P stoichiometry:Toward a unified view of cellular and ecosystem processes[J]. BioScience, 1996, 46(9):674-684. doi:10.2307/1312897.
    [21] ELSER J J, STERNER R W, GOROKHOVA E, et al. Biological stoichio-metry from genes to ecosystems[J]. Ecol Lett, 2000, 3(6):540-550. doi:10.1111/j.1461-0248.2000.00185.x.
    [22] REDEL Y D, ESCUDEY M, ALVEAR M, et al. Effects of tillage and crop rotation on chemical phosphorus forms and some related biological activities in a Chilean Ultisol[J]. Soil Use Manage, 2011, 27(2):221-228. doi:10.1111/j.1475-2743.2011.00334.x.
    [23] TEMESGEN D, GONZÁLO J, TURRIÓN M B. Effects of short-rotation Eucalyptus plantations on soil quality attributes in highly acidic soils of the central highlands of Ethiopia[J]. Soil Use Manage, 2016, 32(2):210-219. doi:10.1111/sum.12257.
    [24] LIAO L P, DENG S J, YU X J, et al. Growth, distribution and exudation of fine roots of Chinese fir trees grown in continuously cropped plantations[J]. Acta Ecol Sin, 2001, 21(4):569-573. doi:10.3321/j. issn:1000-0933.2001.04.008. 廖利平, 邓仕坚, 于小军, 等. 不同连栽代数杉木人工林细根生长、分布与营养物质分泌特征[J]. 生态学报, 2001, 21(4):569-573. doi:10.3321/j.issn:1000-0933.2001.04.008.
    [25] HE J N, SHI Y, YU Z W, et al. Subsoiling improves soil physical and microbial properties, and increases yield of winter wheat in the Huang-Huai-Hai Plain of China[J]. Soil Till Res, 2019, 187:182-193. doi:10.1016/j.still.2018.12.011.
    [26] WENG C F, TANG J, WU L J, et al. Sparingly soluble phosphorus absorption and root response to phosphorus deficiency stress in Eucaly-ptus seedlings[J]. Acta Bot Boreali-Occid Sin, 2014, 34(5):970-975. doi:10.7606/j.issn.1000-4025.2014.05.0970. 翁彩凤, 唐健, 吴柳杰, 等. 桉树幼苗对难溶性磷的吸收及其根系对低磷胁迫的响应[J]. 西北植物学报, 2014, 34(5):970-975. doi:10.7606/j.issn.1000-4025.2014.05.0970.
    [27] LUO M, LIU C H. Effect of mulching greenery waste on soil nutrients and soil microbial biomass of municipal forest land[J]. Ecol Environ Sci, 2016, 25(2):223-232. doi:10.16258/j.cnki.1674-5906.2016.02.007. 罗萌, 刘长海. 绿化植物废弃物对城市林地土壤微生物量和养分特性的影响[J]. 生态环境学报, 2016, 25(2):223-232. doi:10.16258/j.cnki.1674-5906.2016.02.007.
    [28] WANG H L, BI L D, ZHANG B. Change in microbial biomass and its controlling factors in degraded soil after reforestration of Pinus massoniana[J]. Acta Pedol Sin, 2008, 45(2):313-320. doi:10.3321/j. issn:0564-3929.2008.02.017. 王会利, 毕利东, 张斌. 退化红壤马尾松恢复林地土壤微生物生物量变化及其控制因素研究[J]. 土壤学报, 2008, 45(2):313-320. doi:10.3321/j.issn:0564-3929.2008.02.017.
    [29] HUA L, HE Q, LI J Y, et al. Comparison of the water consumption characteristics of Eucalyptus and Corymbia clone seedlings and the local indigenous tree species Bischofia javanica[J]. Chin J Appl Ecol, 2014, 25(6):1639-1644. doi:10.13287/j.1001-9332.20140415.007. 华雷, 何茜, 李吉跃, 等. 桉树无性系和华南乡土树种秋枫苗木耗水特性的比较[J]. 应用生态学报, 2014, 25(6):1639-1644. doi:10.13287/j.1001-9332.20140415.007.
    [30] YI Z G, FU S L, YI W M, et al. Partitioning soil respiration of subtro-pical forests with different successional stages in south China[J]. For Ecol Manage, 2007, 243(2/3):178-186. doi:10.1016/j.foreco.2007.02.022.
    [31] WANG J, YE Z, ZHU G X. Coupling effects of water and phosphate fertilizer supply on soil P availability and use efficiency[J]. Chin J Eco-Agric, 2015, 23(11):1377-1383. doi:10.13930/j.cnki.cjea.150449. 王静, 叶壮, 褚贵新. 水磷一体化对磷素有效性与磷肥利用率的影响[J]. 中国生态农业学报, 2015, 23(11):1377-1383. doi:10.13930/j.cnki.cjea.150449.
    [32] ZRIBI O T, ABDELLY C, DEBEZ A, et al. Interactive effects of salinity and phosphorus availability on growth, water relations, nutria-tional status and photosynthetic activity of barley (Hordeum vulgare L.)[J]. Plant Biol, 2011, 13(6):872-880. doi:10.1111/j.1438-8677.2011.00450.x.
    [33] LIU L, GUNDERSEN P, ZHANG T, et al. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China[J]. Soil Biol Biochem, 2012, 44(1):31-38. doi:10.1016/j.soilbio.2011.08.017.
    [34] WANG W X, SHI Z M, LUO D, et al. Characteristics of soil microbial biomass and community composition in three types of plantations in southern subtropical area of China[J]. Chin J Appl Ecol, 2013, 24(7):1784-1792. doi:10.13287/j.1001-9332.2013.0411. 王卫霞, 史作民, 罗达, 等. 南亚热带3种人工林土壤微生物生物量和微生物群落结构特征[J]. 应用生态学报, 2013, 24(7):1784-1792. doi:10.13287/j.1001-9332.2013.0411.
    [35] YANG G R, ZHANG X Q, CAI D S, et al. Litter decomposition of dominant plantations in Guangxi and its effects on leachate quality[J]. Chin J Appl Ecol, 2012, 23(1):9-16. doi:10.13287/j.1001-9332.2012.0002. 杨钙仁, 张秀清, 蔡德所, 等. 广西主要人工林凋落物分解过程及其对淋溶水质的影响[J]. 应用生态学报, 2012, 23(1):9-16. doi:10.13287/j.1001-9332.2012.0002.
    [36] WU Q S, LONG J, LIAO H K, et al. Soil bacterial community charac-teristics under different microhabitat types on Maolan karst forest, Guizhou, southwest China[J]. Chin J Appl Ecol, 2019, 30(1):108-116. doi:10.13287/j.1001-9332.201901.014. 吴求生, 龙健, 廖洪凯, 等. 贵州茂兰喀斯特森林不同小生境下土壤细菌群落特征[J]. 应用生态学报, 2019, 30(1):108-116. doi:10.13287/j.1001-9332.201901.014.
    [37] BAO T L, ZHAO Y G, GAO L Q, et al. Dynamic of culturable micro-organisms in biological soil crusts under trampling disturbance[J]. J Desert Res, 2019, 39(1):119-126. doi:10.7522/j.issn.1000-694X.2018.00013. 包天莉, 赵允格, 高丽倩, 等. 踩踏干扰下生物结皮土壤可培养微生物数量[J]. 中国沙漠, 2019, 39(1):119-126. doi:10.7522/j.issn. 1000-694X.2018.00013.
    [38] COOK R J, PAPENDICK R I. Soil water potential as a factor in the ecology of Fusarium roseum f. sp. cerealis ‘Culmorum’[J]. Plant Soil, 1970, 32(1/2/3):131-145. doi:10.1007/BF01372852.
    [39] ELSER J J, BRACKEN M E S, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in fresh-water, marine and terrestrial ecosystems[J]. Ecol Lett, 2007, 10(12):1135-1142. doi:10.1111/j.1461-0248.2007.01113.x.
    [40] CLEVELAND C C, TOWNSEND A R, SCHMIDT S K. Phosphorus limitation of microbial processes in moist tropical forests:Evidence from short-term laboratory incubations and field studies[J]. Ecosys-tems, 2002, 5(7):680-691. doi:10.1007/s10021-002-0202-9.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

魏圣钊,李林,曹芹,铁烈华,胡峻嶍,骆晓,谭靖星,黄从德.巨桉连栽对土壤微生物生物量和数量的影响[J].热带亚热带植物学报,2020,28(1):35~43

复制
分享
文章指标
  • 点击次数:924
  • 下载次数: 709
  • HTML阅读次数: 338
  • 引用次数: 0
历史
  • 收稿日期:2019-04-18
  • 最后修改日期:2019-06-27
  • 在线发布日期: 2020-01-15
文章二维码