榄仁树的生理和生物学特性
作者:
基金项目:

国家重点研发计划项目(2016YFC1403002);中国科学院A类战略性先导科技专项(XDA13020500);"十二五"农村领域国家科技计划项目(2015BAL04B04);广东省科技计划项目(2016A030303044)资助


Physiological and Biological Characteristics of Terminalia catappa
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解榄仁树(Terminalia catappa)的生理生态特性,对西沙群岛永兴岛上自然生长的榄仁树的叶片形态、生理特征、营养元素含量以及根际土壤特征进行了研究。结果表明,榄仁树具有比叶面积低、叶片厚、气孔密度小等形态特征。叶绿素a/b为2.25:1,低于理论值3:1。叶片的SOD和POD活性较低,脯氨酸和ABA含量较高。植物体内养分含量较高,适生土壤养分含量低。这说明榄仁树叶片的吸收利用光能能力较强,保水能力较好,有较强的抗干旱和抗逆能力,适生于贫瘠的土壤并保持较高的叶片营养。因此,榄仁树是一种能够适应高温、干旱、贫瘠等恶劣生境条件的树种,可作为热带珊瑚岛植被恢复的工具种和园林绿化树种。

    Abstract:

    In order to understand the eco-physiological characters of Terminalia catappa, its leaf morphology, physiology, nutrient element contents and the rhizosphere soil characteristics were studied grown in Yongxing Island, Xisha Islands. The results showed that T. catappa had low specific leaf area, thick leaf thickness and low stomatal density. The chlorophyll a/b (2.25:1) was lower than theoretic value (3:1). The SOD and POD activities in leaves were low, but proline and abscisic acid contents were high. The nutrient element contents in leaves were high, but the suitable soil nutrient content was low. It indicated that the leaves of T. catappa had high light energy absorptivity, good water holding capacity, and high drought tolerance, thus it was suitable to grow in poor soil conditions and maintain high leaf nutrition levels. Overall, T. catappa can tolerate high temperature, drought and barren soil and can be used as a tool and landscaping species for vegetation restoration on tropical coral island.

    参考文献
    [1] CHEN J. Florae Reipublicae Popularis Sinicae[M]. Beijing:Science Press, 1984:10-11. 陈介. 中国植物志[M]. 北京:科学出版社, 1984:10-11.
    [2] FENG J, LIU Q, WANG J, et al. Effects of leachates from Casuarina equisetifolia on growth and physiological and biochemical characteristics of Terminalia catappa seedlings[J]. Guihaia, 2016, 36(3):308-314. 冯剑, 刘强, 王瑾, 等. 木麻黄浸提液对榄仁树幼苗生长及生理生化的影响[J]. 广西植物, 2016, 36(3):308-314.
    [3] TANG X H, GAO J, WANG Y P, et al. Hepatoprotective effects of chloroform extract from leaf of Terminalia catappa in relation to the inhibition of liver IL-6 expression[J]. China J Chin Mat Med, 2003, 28(12):1170-1174. doi:10.3321/j.issn:1001-5302.2003.12.022. 汤新慧, 高静, 王燕萍, 等. 榄仁叶氯仿提取物的护肝作用及其对肝脏IL-6表达的抑制作用[J]. 中国中药杂志, 2003, 28(12):1170-1174. doi:10.3321/j.issn:1001-5302.2003.12.022.
    [4] BIAN A N, LIN M, WANG W Q. Effects of salt spray on growth and compartmental allocation of mineral element of Terminalia catappa seedlings[J]. Ecol Environ Sci, 2014, 23(11):1752-1758. doi:10. 3969/j.issn.1674-5906.2014.11.005. 卞阿娜, 林鸣, 王文卿. 盐雾胁迫对榄仁幼苗生长及体内矿质元素分布的影响[J]. 生态环境学报, 2014, 23(11):1752-1758. doi:10. 3969/j.issn.1674-5906.2014.11.005.
    [5] LIN X, YAN Z Z, WANG W Q. Ecological distribution and salt tolerance of Terminalia catappa[J]. Subtrop Plant Sci, 2004, 33(4):22-25. doi:10.3969/j.issn.1009-7791.2004.04.007. 林晞, 闫中正, 王文卿. 榄仁树的生态分布与耐盐性研究[J]. 亚热带植物科学, 2004, 33(4):22-25. doi:10.3969/j.issn.1009-7791.2004. 04.007.
    [6] LIAO B B, CAI Y L, XIE C K, et al. Pattern and dynamic of habitats of coral reefs in Yongxing Island, South China Sea[J]. Marine Environ Sci, 2013, 32(5):746-751. 廖彬彬, 蔡永立, 谢长坤, 等. 南海永兴岛珊瑚岛礁生境格局动态研究[J]. 海洋环境科学, 2013, 32(5):746-751.
    [7] TONG Y, JIAN S G, CHEN Q, et al. Vascular plant diversity of the Paracel Islands, China[J]. Biodiv Sci, 2013, 21(3):364-374. doi:10. 3724/SP.J.1003.2013.11222. 童毅, 简曙光, 陈权, 等. 中国西沙群岛植物多样性[J]. 生物多样性, 2013, 21(3):364-374. doi:10.3724/SP.J.1003.2013.11222.
    [8] HULSHOF C M, SWENSON N G. Variation in leaf functional trait values within and across individuals and species:An example from a Costa Rican dry forest[J]. Funct Ecol, 2010:24(1):217-223.
    [9] SACK L, COWAN P D, JAIKUMAR N, et al. The ‘hydrology’ of leaves:co-ordination of structure and function in temperate woody species[J]. Plant Cell Environ, 2003, 26(8):1343-1356. doi:10.1046/j.0016-8025.2003.01058.x.
    [10] HACKE U G, SPERRY J S, POCKMAN W T, et al. Trends in wood density and structure are linked toprevention of xylem implosion by negative pressure[J]. Oecologia, 2001, 126(4):457-461.
    [11] LI R, DANG W, CAI J, et al. Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees[J]. Chin J Plant Ecol, 2016, 40(3):255-263. doi:10.17521/cjpe.2015.0260. 李荣, 党维, 蔡靖, 等. 6个耐旱树种木质部结构与栓塞脆弱性的关系[J]. 植物生态学报, 2016, 40(3):255-263. doi:10.17521/cjpe. 2015.0260.
    [12] ZHANG W W, LIU N, WANG J, et al. Ecological and biological characteristics of Hibiscus tiliaceus, a mangrove associate in China[J]. Guihaia, 2012, 32(2):198-202. doi:10.3969/j.issn.1000-3142.2012. 02.011. 张伟伟, 刘楠, 王俊, 等. 半红树植物黄槿的生态生物学特性研究[J]. 广西植物, 2012, 32(2):198-202. doi:10.3969/j.issn.1000-3142. 2012.02.011.
    [13] DENG J M, XIONG G S, YUAN X L, et al. Differences in SOD, POD, CAT activities and MDA content and their responses to high temperature stress at peak flowering stage in cotton lines with different tolerance to high temperature[J]. Cotton Sci, 2010, 22(3):242-247. doi:10.3969/j.issn.1002-7807.2010.03.009. 邓茳明, 熊格生, 袁小玲, 等. 棉花不同耐高温品系的SOD、POD、CAT活性和MDA含量差异及其对盛花期高温胁迫的响应[J]. 棉花学报, 2010, 22(3):242-247. doi:10.3969/j.issn.1002-7807.2010.03.009.
    [14] AEBI H. Catalase in vitro[J]. Methods Enzymol, 1984, 105:121-126. doi:10.1016/S0076-6879(84)05016-3.
    [15] BATES L S, WALDREN R P, TEARE I D. Rapid determination of free proline for water-stress studies[J]. Plant Soil, 1973, 39(1):205-207. doi:10.1007/BF00018060.
    [16] HEALTH R L, PACKER L. Photoperoxidation in isolated chloroplasts:I. Kinetics and stoichiometry of fatty acid peroxidation[J]. Arch Biochem Biophys, 1968, 125(1):189-198. doi:10.1016/0003-9861(68) 90654-1.
    [17] BENZIE I F F, STRAIN J J. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power":The FRAP assay[J]. Anal Biochem, 1996, 239(1):70-76. doi:10.1006/abio.1996.0292.
    [18] SINGLETON V L, ORTHOFER R, LAMUELA-RAVENTÓS R L. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent[J]. Methods Enzymol, 1999, 299:152-178. doi:10.1016/S0076-6879(99)99017-1.
    [19] LI C N, SRIVASTAVA M K, NONG Q, et al. Mechanism of tolerance to drought in sugarcane plant enhanced by foliage dressing of abscisic acid under water stress[J]. Acta Agron Sin, 2010, 36(5):863-870. doi:10.3724/SP.J.1006.2010.00863. 李长宁, SRIVASTAVA M K, 农倩, 等. 水分胁迫下外源ABA提高甘蔗抗旱性的作用机制[J]. 作物学报, 2010, 36(5):863-870. doi:10.3724/SP.J.1006.2010.00863.
    [20] CORNELISSEN J H C, LAVOREL S, GARNIER E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Aust J Bot, 2003, 51(4):335-380. doi:10.1071/BT02124.
    [21] LIU G S. Soil Physical and Chemical Analysis & Description of Soil Profiles[M]. Beijing:Standards Press of China, 1996:1-266. 刘光崧. 土壤理化分析与剖面描述[M]. 北京:中国标准出版社, 1996:1-266.
    [22] GARNIER E, SHIPLEY B, ROUMET C, et al. A standardized protocol for the determination of specific leaf area and leaf dry matter content[J]. Funct Ecol, 2001, 15(5):688-695. doi:10.1046/j.0269-8463.2001. 00563.x.
    [23] BU W S, ZANG R G, DING Y, et al. Relationships between plant functional traits at the community level and environmental factors during succession in a tropical lowland rainforest on Hainan Island, South China[J]. Biodiv Sci, 2013, 21(3):278-287. doi:10.3724/SP. J.1003.2013.10012. 卜文圣, 臧润国, 丁易, 等. 海南岛热带低地雨林群落水平植物功能性状与环境因子相关性随演替阶段的变化[J]. 生物多样性, 2013, 21(3):278-287. doi:10.3724/SP.J.1003.2013.10012.
    [24] ZHANG X N, WANG B P, SUN X Y, et al. Ability of anti-dehydration and aridity to anatomical structure of leaves of Larrea tridentate[J]. Ecol Environ Sci, 2011, 20(11):1634-1637. doi:10.3969/j.issn.1674-5906.2011.11.008. 张香凝, 王保平, 孙向阳, 等. Larrea tridentata叶片解剖结构与保水特性的研究[J]. 生态环境学报, 2011, 20(11):1634-1637. doi:10. 3969/j.issn.1674-5906.2011.11.008.
    [25] CAI J, TYREE M T. The impact of vessel size on vulnerability curves:Data and models for within-species variability in saplings of aspen, Populus tremuloides Michx[J]. Plant Cell Environ, 2010, 33(7):1059-1069. doi:10.1111/j.1365-3040.2010.02127.x.
    [26] FILELLA I, SERRANO L, SERRA J, et al. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis[J]. Crop Sci, 1995, 35(5):1400-1405. doi:10.2135/cropsci1995.0011183 X003500050023x.
    [27] SHEN W Z, ZOU Y X, LIU F, et al. Study on the correlation between total polyphenol content in mulberry leaves and its in vitro antioxidant activity[J]. Sci Sericult, 2012, 38(6):1073-1078. doi:10.13441/j.cnki. cykx.2012.06.003. 沈维治, 邹宇晓, 刘凡, 等. 桑叶总多酚含量与体外抗氧化能力的相关性研究[J]. 蚕业科学, 2012, 38(6):1073-1078. doi:10.13441/j. cnki.cykx.2012.06.003.
    [28] LI N, HUANG J L, QU B, et al. Effect of drought on membrane lipid peroxidation and protective enzyme activities of Potentilla[J]. Chin J Grassland, 2011, 33(4):73-77. 李楠, 黄佳丽, 曲波, 等. 干旱胁迫对委陵菜膜脂过氧化作用及保护酶活性的影响[J]. 中国草地学报, 2011, 33(4):73-77.
    [29] PAN W, ZHANG F Q, ZHANG W Q, et al. Effects of high temperature and humidity stress on physiological-biochemical indexes of Rhodoleia championii and others and its comprehensive evaluation[J]. Guangdong For Sci Technol, 2012, 28(3):1-8. doi:10.3969/j.issn.1006-4427.2012.03.001潘文, 张方秋, 张卫强, 等. 高温高湿胁迫对红花荷等植物生理生化指标的影响及评价[J]. 广东林业科技, 2012, 28(3):1-8. doi:10. 3969/j.issn.1006-4427.2012.03.001
    [30] JIAO R, LIU H B, LIU G S, et al. Discussion of accumulation of proline and its relationship with osmotic stress tolerance of plants[J]. Chin Agric Sci Bull, 2011, 27(7):216-221. 焦蓉, 刘好宝, 刘贯山, 等. 论脯氨酸累积与植物抗渗透胁迫[J]. 中国农学通报, 2011, 27(7):216-221.
    [31] IKEGAMI K, OKAMOTO M, SEO M, et al. Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit[J]. J Plant Res, 2009, 122(2):235-243. doi:10.1007/s 10265-008-0201-9.
    [32] ELSER J J, FAGAN W F, DENNO R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408(6812):578-580. doi:10.1038/35046058.
    [33] LU Q, WANG J, ZHANG Q M, et al. The ecological and biological characteristics of Mucuna birdwoodiana[J]. Ecol Sci, 2009, 28(3):212-216. doi:10.3969/j.issn.1008-8873.2009.03.004. 卢琼, 王俊, 张倩媚, 等. 白花油麻藤(Mucuna birdwoodiana)的生态生物学特征[J]. 生态科学, 2009, 28(3):212-216. doi:10.3969/j. issn.1008-8873.2009.03.004.
    [34] REICH P B, OLEKSYN J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proc Natl Acad Sci USA, 2004, 101(30):11001-11006. doi:10.1073/pnas.0403588101.
    [35] ZHANG C, CHEN H S, ZHANG W, et al. Spatial variation characteristics of surface soil water content, bulk density and saturated hydraulic conductivity on Karst slopes[J]. Chin J Appl Ecol, 2014, 25(6):1585-1591. doi:10.13287/j.1001-9332.20140415.013. 张川, 陈洪松, 张伟, 等. 喀斯特坡面表层土壤含水量、容重和饱和导水率的空间变异特征[J]. 应用生态学报, 2014, 25(6):1585-1591. doi:10.13287/j.1001-9332.20140415.013.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

宋光满,刘楠,简曙光,刘慧,张炜,韩涛涛,王俊,任海.榄仁树的生理和生物学特性[J].热带亚热带植物学报,2018,26(1):40~46

复制
分享
文章指标
  • 点击次数:1683
  • 下载次数: 1467
  • HTML阅读次数: 373
  • 引用次数: 0
历史
  • 收稿日期:2017-08-15
  • 最后修改日期:2017-09-27
  • 在线发布日期: 2018-01-30
文章二维码