马尾松PmPGK1和PmGPIC基因的克隆和表达分析
夏林超, 吴帆, 季孔庶

在线阅读 View online: https://doi.org/10.11926/jtsb.4315

您可能感兴趣的其他文章
Articles you may be interested in

RNA干扰20S蛋白酶体α亚基基因对莱茵衣藻油脂代谢的影响
Effect of RNA Interference 20S Proteasome α Subunit A Gene on Lipid Metabolism in Chlamydomonas reinhardtii

青花菜BoSCL3基因的克隆和渍水胁迫下的表达特征分析
Cloning BoSCL3 Gene from Brassica olreacea var. italica and Expression Analysis under Waterlogging Stress

毛竹APX家族基因鉴定和表达分析
Identification and Expression Analysis of the APX Gene Family in Phyllostachys edulis

铁皮石斛DoSMT2基因的克隆与表达分析
Cloning and Expression Analysis of DoSMT2 Gene in Dendrobium officinale
热带亚热带植物学报. 2020, 28(6): 591–598 https://doi.org/10.11926/jtsb.4234

铁皮石斛WOX转录因子的鉴定和分析
Identification and Analysis of WOX Transcription Factor in Dendrobium officinale
马尾松 PmPGK1 和 PmGPIC 基因的克隆和表达分析

夏林超*，吴帆*，季孔庶**
（南京林业大学林木遗传与生物技术教育部重点实验室，南方现代林业协同创新中心，南京 210037）

摘要：为了解马尾松 (Pinus massoniana) 磷酸甘油酸激酶 1 (PGK1) 与胞质溶胶葡萄糖磷酸异构酶 (GPIC) 的功能，采用 RACE 技术克隆了 PmPGK1 和 PmGPIC 基因，并进行了生物信息学分析与亚细胞定位。采用实时荧光定量 PCR 技术分析 PmPGK1 和 PmGPIC 的表达特性。结果表明，PmPGK1 和 PmGPIC 全长为 2106 和 1848 bp，分别编码 507 和 566 个氨基酸。PmPGK1 和 PmGPIC 分别定位于叶绿体和胞质溶胶。PmPGK1 表达量为新叶 > 老叶 > 新茎 > 根 > 花，而 PmGPIC 为老叶 > 花 > 新叶 > 新茎 > 根。低温胁迫 24 h，PmPGK1 和 PmGPIC 的表达量均随时间延长先降低后升高，且 PmGPIC 的表达量在处理 2 h 后即降至较低水平；高浓度 CO2 胁迫 24 h，PmPGK1 的表达量随时间延长呈降低-升高-再降低的变化趋势，PmGPIC 的表达下调但变化不显著。因此，推测 PmPGK1 主要参与卡尔文循环及叶绿体/质体糖酵解，PmGPIC 主要参与细胞质基质糖酵解；PmPGK1、PmGPIC 活性在低温胁迫下均受抑制；PmPGK1 活性在 CO2 胁迫下受到显著抑制，而 PmGPIC 活性的影响不大。

关键词：马尾松; PmPGK1; PmGPIC; 基因克隆; 亚细胞定位
doi: 10.11926/jtsb.4315

Cloning and Expression Analysis on PmPGK1 and PmGPIC Genes in Pinus massoniana

XIA Lin-chao*, WU Fan*, JI Kong-shu**
(Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China)

Abstract: To understand the functions of phosphoglycerate kinase 1 (PGK1) and cytosolic glucose phosphate isomerase (CPIC) of Pinus massoniana, the cDNA of PmPGK1 and PmGPIC were cloned by RACE, and the bioinformatic and subcellular localization of PmPGK1 and PmGPIC were analyzed, and then their expression patterns were performed by qRT-PCR. The results showed that the full-length cDNA of PmPGK1 and PmGPIC were 2106 and 1848 bp, encoding 507 and 566 amino acids, respectively. PmPGK1 and PmGPIC proteins were located in chloroplast and cytosol, respectively. The expression of PmPGK1 was in order of new leaf > old leaf > new stem > root > flower, while that of PmGPIC was old leaf > flower > new leaf > new stem > root. Under low temperature stress for 24 hours, the expression of PmPGK1 and PmGPIC decreased at first and then increased, and the expression of PmGPIC decreased to a low level after 2 hours. Under high CO2 stress for 24 hours, the expression of PmPGK1 was significantly down-regulated, showing a trend of decrease-increase-decrease, while the down-regulation of PmGPIC was not obvious. Therefore, it was suggested that PmPGK1 mainly participated in the Calvin cycle and chloroplast/plast glycolysis, and PmGPIC was mainly involved in cytosolic glycolysis. The activities of PmPGK1 and PmGPIC were inhibited under low temperature stress, and PmPGK1 activity was...
significantly inhibited under high CO₂ stress, while PmGPIC activity was less affected.

Key words: Pinus massoniana; PmPGK1; PmGPIC; Gene clone; Subcellular localization

Phosphoglycerate kinase (PGK) is an important, soluble, rate-limited kinase used for basic metabolism in all organisms\(^1\). In plants, PGK participates in the Calvin cycle and glycolysis by catalyzing the release and transfer of high-energy phosphate groups between 3-phosphoglycerate (PGA) and 1,3-diphosphoglycerate (DPGA) and then catalyzing the reversible conversion of PGA and DPGA\(^2\). Glucose phosphate isomerase (GPI) is a multifunctional dimer protein in organisms that plays an important role in the carbohydrate metabolism cycle\(^3\). It catalyzes and breaks the molecular ring structure of fructose-6-phosphate (F6P) or glucose-6-phosphate (G6P) and transfers the intramolecular proton via its enzymatic acid-base catalytic mechanism and finally the two hexoses undergo reversible isomerization\(^2,4\).

PGK exists in only one form in prokaryotes, while in most eukaryotes, there are 2–3 isoforms with different subcellular localizations\(^1,5\). PGK in plants is divided into two localization subtypes: cytosolic and chloroplast/plastidal PGK. Cytosol PGK mainly participates in cytoplasmic matrix glycolysis, while chloroplastic/plastidal PGK is mainly involved in the dual metabolic pathway of the Calvin cycle and chloroplastic/plastidal glycolysis\(^6\). GPI exists as a single form of cytosolic GPI in most animals and microorganisms, while there is also a plastidial GPI in plant cells\(^7\). Cytosolic GPI mainly participates in sucrose synthesis and glycolysis, and plastidial GPI is mainly involved in the metabolism of the oxidative pentose phosphate pathway (OPPP) and starch synthesis\(^8-9\).

At present, research on PGK and GPI mainly focuses on clinical diagnosis\(^10-12\). There are relatively few studies on the protein subcellular localization, biological function and gene expression analysis of isoenzymes encoding different subtypes of PGK and GPI in plants, and the researches of the two enzymes in plants are mainly concentrated on annual plants, such as Arabidopsis thaliana or Helianthus annuus\(^13-16\). In this research, we cloned the PGK1 and GPI genes of masson pine, which encode phosphoglycerate kinase 1 (PGK1) and cytosolic glucose phosphate isomerase (CPI), respectively. To explore the function of PmPGK1 and PmGPIC, bioinformatic analysis, subcellular localization analysis and quantitative real-time PCR (qRT-PCR) analysis based on tissue-specific expression, low temperature and high CO₂ stress were performed. The results of this research could advance our understanding of PGK and GPI in Masson pine and other plants.

1 Materials and methods

1.1 Test materials

The plant material used for rapid amplification of cDNA ends (RACE) analysis was derived from germinated seeds of masson pine (Pinus massoniana). The protoplast material used for subcellular localization was obtained from wild-type Arabidopsis thaliana (Columbia ecotype) at 3–4-week-old and not flowered. A laboratory-preserved pJIT166 transient expression vector was used for subcellular localization. Materials for tissue-specific expression were collected from 15-year-old masson pine in the arboreal garden of Nanjing Forestry University. The annual masson pine seedlings were used for expression analysis under low-temperature and elevated-CO₂ stress, which were provided by Fujian Baisha Forest Farm and then planted in soil (nutrient soil : vermiculite : perlite = 1 : 1 : 1) in laboratory in September, 2018. The seedlings were grown in a naturally chamber with a cycle of 10 h light/14 h dark, day/night temperature of 30°C /26°C, and a relative humidity of 60%, with a slow seedling stage for about 15 days. Then the seedlings with the same growth state were selected for the following experiment.

1.2 Total RNA extraction and full-length gene clone

Total RNA was extracted from masson pine seedlings followed the RNAprep Pure RNA extraction
kit (Tiangen, Beijing). The concentration and quality of the RNA were detected by a NanoDrop fluorometer (ThermoFisher, MA, USA) and electrophoresis, respectively. First-strand cDNA was synthesized by using TransScript® One-Step gDNA Removal and cDNA Synthesis SuperMix (TransGen, Beijing).

The PmPGK1 and PmGPIC sequences were screened out after homology comparison between the PGK1 and GPIC gene sequences of Arabidopsis thaliana obtained from the NCBI database (https://www.ncbi.nlm.nih.gov/) and the masson pine transcriptome database (NCBI access No.: PRJNA561037). The cloning and amplification of intermediate fragments were carried out using the amplification primers (Table 1). Then, according to the intermediate sequence, the 5’/3’ RACE-specific primer was used to amplify the 5’/3’ end sequence according to the instructions of the SMARTer RACE 5’/3’ Kit (TaKaRa, Beijing). The full-length of PmPGK1 and PmGPIC cDNA was obtained after sequence alignment and splicing prediction, and conserved domains from the NCBI database were used for PmPGK1 and PmGPIC conserved domain analysis.

Table 1 Sequences of primers used in this study

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5’−3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PmPGK1-Mid</td>
<td>F: TGCCCTCTAAATGCTCAAGCTTG</td>
</tr>
<tr>
<td></td>
<td>R: CAGGTCCCAGCTAAGTTAAAG</td>
</tr>
<tr>
<td>PmGPIC-Mid</td>
<td>F: GTCAATGAGTGATAAGATGCTAG</td>
</tr>
<tr>
<td></td>
<td>R: GACGAAATTATATGGAATTTCTCGG</td>
</tr>
<tr>
<td>PmPGK1-5’ RACE</td>
<td>CCCTCTTCTACCCAATGATGATGCTGG</td>
</tr>
<tr>
<td>PmPGK1-3’ RACE</td>
<td>TCTTCGCAGGTACAGGTGAC</td>
</tr>
<tr>
<td>PmGPIC-5’ RACE</td>
<td>GAACCATGGAACATGGAACATG</td>
</tr>
<tr>
<td>PmGPIC-3’ RACE</td>
<td>CCCCCTTGTACCCATAGTACGG</td>
</tr>
<tr>
<td>pJIT166-PmPGK1</td>
<td>F*: tggagaggagccaccaagctATGGCTCCTAAGCCGAC</td>
</tr>
<tr>
<td></td>
<td>R*: gccctgtgcacccctgggtgATGGCTTCAAGCCGAC</td>
</tr>
<tr>
<td>pJIT166-PmGPIC</td>
<td>F*: tggagaggagccaccaagctATGGCTCCTAAGCCGAC</td>
</tr>
<tr>
<td></td>
<td>R*: gccctgtgcacccctgggtgATGGCTTCAAGCCGAC</td>
</tr>
<tr>
<td>pJIT166-35S-F’</td>
<td>atccccactatctttcgaagac</td>
</tr>
<tr>
<td>pJIT166-GFP-R</td>
<td>CACGAGGCTGGCCAGCCAGGC</td>
</tr>
<tr>
<td>PmACTIN2-qRT-PCR</td>
<td>F: GTAGCCTCCTCAGTGAGAGAAAGT</td>
</tr>
<tr>
<td></td>
<td>R: GCCTTTGCACTCACTCTTTGT</td>
</tr>
<tr>
<td>PmPGK1-qRT-PCR</td>
<td>F: CCTCCCTTGGAGGATGAC</td>
</tr>
<tr>
<td></td>
<td>R: CTGGAATATATCCTACGAGGC</td>
</tr>
<tr>
<td>PmGPIC-qRT-PCR</td>
<td>F: GGAGGGAGCAGAAGGATAG</td>
</tr>
<tr>
<td></td>
<td>R: CCTCCCTTTAATGCTCCTAT</td>
</tr>
</tbody>
</table>

*: Lowercase letters are the carrier sequence.

1.3 Bioinformatic analysis

Blastn and Blastp from the NCBI were used to compare the homologous sequences of PmPGK1 and PmGPIC cDNA and the amino acid sequences of their encoded proteins. Then, MEGA 7.0 was used to construct PmPGK1 and PmGPIC phylogenetic trees by the neighbor-joining method. WoLF PSORT (https://wolfpsort.hgc.jp/) was used to analyze the subcellular localization of PmPGK1 and PmGPIC proteins.

1.4 Subcellular localization

pJIT166 plasmid was double digested (restriction enzyme cutting sites: Hind III and Xba I). The recombinant expression vector was constructed according to the ClonExpress II One-Step Cloning Kit (Vazyme Biotech, Nanjing). The recombinant plasmid was extracted according to the instructions of the Plasmid Maxi Kit (QIAGEN, Germany) after transformation into Escherichia coli and culture expansion. According to the manufacturer’s instructions (Real-time Biotech, Beijing), approximately 10 large and plump wild-type Arabidopsis thaliana (Columbia ecotype) leaves were selected and cut into thin strips with a width of 0.5−1.0 mm to prepare protoplasts, and then, the pJIT166 recom-
binant plasmid (>1 μg/μL) was transformed into the prepared protoplast (10 μL). Finally, the above solution was put in a 22°C –25°C dark environment for 14–16 h of incubation, and the fluorescence reaction was recorded at 488 and 543 nm by fluorescence microscopy. Protoplasts with empty vector accompanied by green fluorescent protein (GFP) were used as the control group (CK group).

1.5 Expression patterns

For tissue-specific expression analysis, total RNA from 5 tissues, including new leaves (NL), old leaves (OL), new stems (NS), flowers (F) and roots (R), was extracted with three biological replicates for each treatment using a Plant RNA Isolation Kit (Tiangen Biotech, Beijing). Then, first-strand cDNA was synthesized with FastKing gDNA Dissembling RT SuperMix (Tiangen Biotech, Beijing) according to the manufacturer’s instructions. For cold stress, annual seedlings were placed in a refrigerator at 4°C and the seedling leaves were collected at 0, 2, 4, 8, 12 and 24 h, respectively. For elevated-CO₂ stress, the seedlings were moved into a growth chamber with 10 h light/14 h dark at 25°C. Air containing approximately 400–450 mg/m³ CO₂ (approximately two times the ambient CO₂ concentration) was injected into the growth chamber constantly for at least 24 h. Then, the seedling leaves were sampled after 0, 6, 12 and 24 h of treatment. For qRT-PCR, the mixtures consisted of 10 μL of 2×ChamQ™ Universal SYBR® qPCR Master Mix (Vazyme Biotech, Nanjing), 0.4 μL of forward primer and reverse primer, 2 μL of cDNA, and 7.2 μL of ddH₂O. The qRT-PCR program consisted of three stages: 95°C for 30 s (preincubation), 95°C for 10 s, 60°C for 30 s, and 72°C for 30 s, cycling 40 times (amplification), and 95°C for 15 s, 60°C for 1 min and 95°C for 15 s (melting curves). QRT-PCR quality was estimated based on the melting curves. *Pm*Actin2 (NCBI Accession No.: KM496525.1) was used as the internal control[17]. The gene-specific primers employed are shown in Table 1. Three independent technical replicates were performed for each treatment. Quantification was achieved using comparative cycle threshold (Ct) values, and gene expression levels were calculated using the $2^{-ΔΔC_T}$ method[17].

2 Results

2.1 Full-length clone of *PmPGK1* and *PmGPIC*

The intermediate fragments of *PmPGK1* and *PmGPIC* were 1 564 and 1 305 bp, respectively. The 5’/3’ RACE sequences of *PmPGK1* were 297 and 1 225 bp, respectively, and those of *PmGPIC* were 1 056 and 1 117 bp, respectively. After sequence alignment and splicing, it was found that the full-length of *PmPGK1* and *PmGPIC* were 1 848 bp (NCBI Accession No.: MT586614) and 2 106 bp (NCBI Accession No.: MT591683), respectively (Table 2). According to ORF Finder analysis, the 5’/3’ cDNA ends of *PmPGK1* had 93 and 324 bp untranslated regions (UTRs), respectively. The open reading frame (ORF) of *PmPGK1* covered 1 524 bp, encoding 507 amino acids. In contrast, the 5’/3’ cDNA ends of *PmGPIC* had 146 and 259 bp UTRs, respectively. The ORF of *PmGPIC* covered 1 701 bp, encoding 566 amino acids. Conserved domain analysis showed that *PmPGK1* and *PmGPIC* were members of the phosphoglycerate kinase superfamily and PLN06249 superfamily, respectively (Fig. 1).

2.2 Sequence alignment and phylogenetic tree

The Blastn comparison results showed that the similarity of *PGK1* between *P. massoniana* and *P. pinaster* (the only species reported *PGK1* sequence from gymnosperms) was 98.53%, and that between *P. massoniana* and angiosperms was 73%–80%. The similarity of *PmGPIC* with GPIC in *Cedrus libani* reached 93.66%, and with those in *Ginkgo biloba*, *Encephalartos barteri*, and *Cryptomeria japonica* was 85.60%, 84.23% and 83.64%, respectively. The similarity of PGK1 between *P. massoniana* and *P. pinaster* was 99.01%. In terms of known angiosperm plants, the similarity with the chloroplastic PGK of *Carica papaya*, *Asparagus officinalis* and *Prosopis alba* was 87.65%, 85.22% and 84.28%, respectively, and that with the cytosolic PGK of *Cajanus cajan*, *Glycine max* and *Dendrobium catenatum* were...
87.92%, 87.89% and 83.56%, respectively. For GPIC, among the known angiosperms, the similarities between Masson pine and Ananas comosus, Elaeis guineensis and Apostasia shenzhenica were higher than those with others, reaching 81.16%, 87.92%, 87.89% and 83.56%, respectively. For GPIC, the closest relationship, and then clustered with angiosperms, 80.86% and 80.43%, respectively.

According to PGK phylogenetic analysis, P. massoniana clustered with P. pinaster firstly, showing the closest relationship, and then clustered with angiosperms (Fig. 2: A). For PGK, masson pine, Cedrus libani, Cryptomeria japonica and Ginkgo biloba were clustered initially, with a confidence of 100%, and then sequentially clustered with monocotyledonous and dicotyledonous plants (Fig. 2: B). These results were consistent with the homology comparison results.

2.3 Subcellular localization

The localization results showed that the empty vector GFP fluorescence signal was expressed in the cell membrane, cytoplasm and nucleus (Fig. 3: a–d). WolF PSORT predicted that PmPGK1 was located in the cytosol, which was different from the subcellular localization result that it was located in the chloroplast (Fig. 3: e–h). The fluorescence signal of PmPGIC was filled the cytoplasmic matrix (Fig. 3: i–l), which was consistent with the prediction of WolF PSORT.
2.4 Gene expression pattern

Tissue-specific expression analysis revealed that the expression of *PmPGK1* in new leaf (NL) was the highest, followed by new stem (NS) and old leaf (OL). The expression difference among three tissues was relatively small. The lowest expression was observed in flower (F), which had significant difference from that in other tissues ($P < 0.05$) (Fig. 4: A). For *PmGPIC*, the expression was the highest in old leaf and nearly zero in the roots (R). There were significant differences among all tissues except new leaf and flower (Fig. 4: A).

Under low-temperature stress within 12 h, the expression of *PmPGK1* and *PmGPIC* decreased with the time, and the decrease in *PmGPIC* was more obvious than that in *PmPGK1*. The expression level of *PmPGK1* decreased to the lowest level after 12 h stress, showing a significant difference from that in other groups (Fig. 4: B). On the other hand, along the time, there was no significant difference in expression of *PmGPIC* among the experimental groups (Fig. 4: B). Under elevated-CO$_2$ stress, *PmPGK1* showed significant differences among different time and showing a trend of decreasing-increasing-decreasing (Fig. 4: C). The expression of *PmGPIC* did not change significantly under high-CO$_2$ stress and within 24 h (Fig. 4: C).

3 Conclusion and discussion

Both of PGK and GPI have two localization subtypes in plant cells, i.e. cytoplasmic and plastidial. Isoenzymes of different localization types perform different functions in cell metabolism\cite{1,7}. According to the subcellular localization, it was found that *PmPGK1* was located in the chloroplast, belonging to chloroplast/plastidial subtype, mainly involved in Calvin cycle and chloroplast/plastid glycolytic metabolism and catalyzes the reversible reaction between PGA and DPGA\cite{6,13-14}. This result is the same as *AtPGK1* in *Arabidopsis thaliana* by Rosa-Téllez et al.\cite{13}, but contrary to that of Huang et al.\cite{18}, who proved that PGK1 was localized in the cytosol.
PmGPIC was located in the cytosol, which proved that it was mainly involved in sucrose synthesis and glycolytic metabolism in the cell matrix and catalyzed the reversible isomerization between F6P and G6P. Currently, there are no reports on the subcellular localization of plant GPI isoenzymes.

The expression of PmPGK1 in leaf was higher than that in other tissues, which was consistent with
Fig. 3 Subcellular localization of PmPGK1 and PmGPIC proteins in protoplast of Arabidopsis thaliana. A: pJIT166-GFP; B: pJIT166-PmPGK1-GFP; C: pJIT166-PmGPIC-GFP; a, e, f: Chloroplast autofluorescence field; b, f, j: GFP field; c, g, k: Bright field; d, h, l: Merged pictures.

Fig. 4 Expression of PmPGK1 and PmGPIC in different tissues (A), under low-temperature stress (B) and high-CO$_2$ stress (C). NL: New leaf; OL: Old leaf; NS: New stem; F: Flower; R: Root. Different letters upon column indicate significant differences at 0.05 level by Duncan test.

the results in Arabidopsis thaliana$^{[13]}$ and Brassica napus$^{[19]}$. On the other hand, PmPGK1 was also expressed in root, new stem and flower, suggesting that it is involved in glycolytic metabolism in these organs. Compared with P. massoniana, PGK1 in Arabidopsis thaliana$^{[13]}$ and Brassica napus$^{[19]}$ showed the highest expression in flower. This discrepancy may be caused by some metabolic differences between perennial trees and annual herbs. PmGPIC was mainly expressed in leaves and flowers, and the expression level was highest in old leaves. Therefore, it is speculated that the transformation reaction between F6P and G6P catalyzed by PmGPIC in old leaves was stronger than that in new leaves and flowers. This result was consistent with that of Troncoso-Ponce et al.$^{[16]}$.

Previous studies have proven that low temperature could reduce the stability of chlorophyll, the solubility of CO$_2$ in cells and the affinity of Rubisco to CO$_2$, directly affecting the integrity and activity of the photosynthetic system$^{[20–21]}$. As important regulating enzymes in the Calvin cycle, RuBP carboxylase (RuBPCase), phosphoribulose kinase (PRK) and 1,6-fructose bisphosphatase (FBP) all showed a decreasing trend of expression under low temperature stress$^{[22–25]}$. The reaction product of RuBPCase and PRK was the reaction substrate of PmPGK1; therefore, the influence of low temperature on both led to a decrease in the
activity of PmPGK1 and gene expression. Meanwhile, the respiration metabolism of plants under low temperature stress was dominated by the tricarboxylic acid cycle (TCA), at which time the glycolysis pathway was inhibited\[26\]. In addition, FBP activity was reduced under low temperature, resulting in a decrease in the catalytic substrate of PmGPIC\[23,25\]. Based on the above factors, the expression of PmGPIC was more downregulated after low temperature treatment than that of PmPGK1, showing a sharp decline.

Previous studies\[27\] have shown that the expression of all genes in the Calvin cycle, except GAPDH, decrease under a high CO\(_2\) concentration in masson pine; therefore, it was speculated that the photosynthetic acclimation of masson pine could be completed within 6 h. In addition, it was found that an increased CO\(_2\) concentration leads to a significant increase in hexokinase (HK) activity\[27\], while HK strongly inhibits the activity of Rubisco and Rubisco small subunit (RbcS)\[24–29\], in turn decreasing the content of PGA (the direct catalytic substrate for the transformation of RuBP to PGK, resulting in a significant decrease in the expression of PGK1). According to the changes in the expression levels of the two genes, PmGPIC was less affected by CO\(_2\) stress than PmPGK1. The transcriptome sequencing results in a previous study\[27\] showed that the expression levels of PmGPIC were higher after treatment than those at 0 h, which was different from the finding in this experiment, but the overall trends of change were consistent. Invertase (INV) phosphorylates glucose and fructose to form the catalytic substrate of GPIC\[2\]. Under elevated CO\(_2\) conditions, the expression levels of INV and HK in Masson pine were significantly increased\[27\], so the expression level of PmGPIC was slightly increased after 6 h. The decrease in PmGPIC after 12 h might have been caused by gradual decreases in the accumulation of photosynthetic products and the glucose metabolic rate. In addition, since photosynthetic adaptation is more obvious in annual needles than in that mature needles under elevated-CO\(_2\) stress\[30\], more detection could be used before photosynthetic adaptation, and the response mechanism of PmPGK1 and PmGPIC could be further explored by comparison with the responses in perennial Masson pine samples.

In this study, full-length PmPGK1 and PmGPIC were cloned, and encoding proteins were belong to the plastidial and cytoplasmic subtypes, respectively. PmPGK1 was mainly expressed in leaves, and PmGPIC was mainly expressed in leaves and flowers. The expression of PmPGK1 and PmGPIC was inhibited under low-temperature stress, and the inhibitory effect on PmGPIC was stronger. Elevated-CO\(_2\) stress significantly inhibited the expression of PmPGK1 but had little effect on the expression of PmGPIC. The results of this study provide some references for subsequent studies on PGK and GPI in plants.

References

