染色质重塑因子在植物发育过程的功能

彭锈玲 1,2, 王剑豪 1,2, 杨松光 1*

(1. 中国科学院华南植物园, 华南农业植物分子分析与遗传改良重点实验室, 广州 510650; 2. 中国科学院大学, 北京 100049)

摘要:染色质重塑复合体(chromatin remodeling complexes)通过具有 ATPase 活性的亚基水解 ATP 释放能量,通过改变核小体 "构象"(包括核小体重定位、核小体滑动和核小体替换等)而改变 DNA 的"可及性"(accessibility),进而影响特定的生理、生化 过程。染色质重塑复合体最早在酵母中发现,生化分析表明其至少含有 13 个亚基。目前植物染色质重塑复合体的组成还未 完全解析,但通过对其酵母同源亚基(染色质重塑因子)的研究可从侧面探究植物染色质重塑复合体的功能。同时,还着重讨 论了近年来在植物染色质重塑因子研究上取得的结果,以期为植物染色质重塑的作用机制提供启示。

关键词:染色质重塑因子;表观调控;功能;植物

doi: 10.11926/jtsb.4070

Functions of ATP-dependent Chromatin Remodeling Factors in Plant Development

PENG Xiu-ling^{1,2}, WANG Jian-hao^{1,2}, YANG Song-guang^{1*}

(1. Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; 2. University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China)

Abstract: In eukaryotic cells, the ATP-dependent chromatin remodeling complexes utilize the energy of ATP to disrupt nucleosome DNA contacts, move nucleosomes along DNA, and remove or exchange nucleosomes. They thus make DNA/chromatin available to proteins that need to access DNA or histones directly during cellular processes. The first chromatin remodeling complex was found in yeast, containing at least 11 subunits by biochemical analysis. However, the chromatin remodeling complexes in plants are less known. The studies on plant chromatin remodeling factors were reviewed, which would provide insights into the involvement of plant chromatin remodeling in development.

Key words: Chromatin remodeling factor; Epigenetic regulation; Function; Plant

1 染色质重塑复合体

真核生物遗传信息以核小体为基本单位,经高度包裹压缩存储于染色质中。因此真核生物在 DNA 复制、转录、重组和 DNA 修复等过程中首先要克服 DNA 与组蛋白之间的"紧密"结合。涉及该过程的蛋白主要包括两类,即染色质修饰酶(包括组蛋白修饰酶和 DNA 修饰酶)和依赖于 ATP 的染色质重塑

因子(ATP-dependent chromatin remodelers, ATPase)。 前者通过添加或者移除组蛋白和 DNA 上的化学基 团改变 DNA 的"可及性"^[1],而后者通过与其他蛋白 组成染色质重塑复合体水解 ATP 释放能量,改变核 小体"构象"(positioning, occupancy and composition of nucleosomes)而改变 DNA 的"可及性",进而影响 特定的生理过程^[2-3]。

染色质重塑复合体最早从酵母 swi (mating type

收稿日期: 2019-03-25 **接受日期:** 2019-05-17

基金项目: 广东省杰出青年基金项目(2016A030306047); 广州市珠江科技新星项目(201610010138); 国家自然科学基金项目(31672161)资助 This work was supported by the Guangdong Natural Science Funds for Distinguished Young Scholars (Grant No. 2016A030306047); the Pearl River Science and Technology Nova Program of Guangzhou (Grant No. 201610010138), and the National Natural Science Foundation of China (Grant No. 31672161). * 通信作者 Corresponding author. E-mail: yangsongguang@scbg.ac.cn

switching)和 snf (sucrose non-fermenting)突变体中分 离鉴定。生化分析表明该复合体含有至少 11 个亚基 (SWI1、SWI2/SNF2、SWI3、SNF5、SWP73、ARP7、 ARP9、SWP82、SNF6、SNF11 和 TAF14),其中 SWI2/SNF2 蛋白具有 ATPases 活性^[4],SWP82、 SNF6、SNF11 和 TAF14 为酵母所特有(表 1)。根据 ATPase 亚基的结构,可将染色质重塑复合体分为 4 类(表 1~3),即 SWI/SNF、ISWI、CHD 和 INO80/ SWR1^[2],且不同复合体可能包括相同的亚基。研究 表明,这 4 类染色质重塑复合体 ATPase 亚基无论 是在酵母、果蝇还是人类中均十分保守,含有保守 的 ATPase 催化结构域(SNF2-N 结构域),该催化结 构域可进一步细分为 DExx 和 HELICc 两部分(图

表1 不同物种的 SWI/SNF 复合体组成

Table 1 Compositions of SWI	/SNF complexes ir	different species
-----------------------------	-------------------	-------------------

1)。除 ATPase 催化结构域外,不同染色质重塑复合体 ATPase 亚基还含有特异结构,如 SWI/SNF (mating type switching/sucrose non-fermenting)复合体 ATPase 亚基 N 端含有 HSA (helicase-SANT)结构域而 C 端 含有 bromodomain 结构域^[5-6]。bromodomain 结构域 能识别组蛋白"尾巴"乙酰化的残基,使 SWI/SNF 复合体结合在染色质特定位点^[7-8]。而 ISWI (imitation switch)复合体 ATPase 亚基 C 端含有 SANT 和 SLIDE 结构域,这二者形成一个核小体识别结构与未修饰的组蛋白和 DNA 结合^[9]。CHD (chromodomain helicase-DNA binding)复合体 ATPase 亚基 N 端有串 联的 chromodomain 结构域^[10],能识别组蛋白 H3K4 的甲基化位点^[11-12]。与其他三类 ATPase 亚基相比,

-	•	•				
亚基组成	酵母 Veast		人类 Human		拟南芥 Arabidonsis	
composition	I.	cust	110	man	Arubiuopsis	
复合体 Complex	SWI/SNF	RSC	BAF	PBAF	SWI/SNF	
催化亚基 ATPase	Swi2/Snf2	Sth1	hBRM or BRG1	BRG1	AtBRM/CHR2, AtSYD/CHR3, CHR12, CHR23	
非催化亚基	Swi1/Adr6		BAF250/hOSA1			
Noncatalytic				BAF180		
subunits				BAF200		
	Swi3	Rsc8/Swh3	BAF155, BAF170	BAF155, BAF170	SWI3A or B or C or D	
	Swp73	Rsc6	BAF60a or b or c	BAF60a or b or c	SWP73A or B	
	Snf5	Sfh1	hSNF5/BAF47/ INI1	hSNF5/BAF47/ INI1	BSH	
	Arp7, Arp9	Arp7, Arp9	BAF53a or b	BAF53a or b	ARP4 or ARP7	
			β -actin	β -actin		
			Brd7	Brd7	BRD1 or 2 or 13	
特有亚基 Unique	Swp82, Taf14, Snf6, Snf11	Rsc3, 5, 7, 9, 10, 30, Htl1, Lbd7, Rtt102	Brd9	ARID2, BAF180		

表 2 不同物种的 ISWI、CHD 复合体组成

Table 2 Compositions of ISWI and CHD complexes in different species

类型 Family	亚基组成 Subunit composition		酵母 Yeast			人类 Human		拟南芥 Arabidopsis
ISWI	复合体 Complex	ISWIa	ISWIb	ISWI2	NURF	CHRAC	ACF	
	催化亚基 ATPase	Isw1	Isw1	Isw2	SNF2L	SNF2H	SNF2H	CHR11, CHR17
	非催化亚基 Noncatalytic			Itc1	BPTF	hACF1/WCRF180	hACF1/W CRF180	
	subunits			Dpb4		hCHRAC17		
				Dls1		hCHRAC15		
					RbAp46 or 48			
	特有亚基 Unique	Ioc3	Ioc2, Ioc4					
CHD	复合体 Complex	CHD1			CHD1	NuRD		
	催化亚基 ATPase	Chd1			Chd1	Mi-2 α /CHD3, Mi-2 β /CH	D4	CHR5, PICKLE/CHR6
	非催化亚基					MBD3, MTA1,2,3		
	Noncatalytic					HDAC1,2, RbAp46 or 48		
	subunits					p66α, β		
	特有业基 Unique					DOC-I		

亚基组成 Subunit composition	酉 Ye	孝母: east		人类 Human		拟南 Arabida	芥 opsis
复合体 Complex	INO80	SWR1	INO80	SWR1/SRCAP	NuA4/Tip60	INO80	SWR1
催化亚基 ATPase	Ino80	Swr1	hIno80	SRCAP	p400	INO80	PIE1
非催化亚基 Noncatalytic	Rvb1, Rvb2	Rvb1, Rvb2	Tip49a, Tip49b	Tip49a, Tip49b	Tip49a, Tip49b	RVB1/RIN1, RVB2A or B	RVB1/RIN1, RVB2A or B
homologous	Arp4, Actin1	Arp4, Actin1	BAF53a	BAF53a	BAF53a	ARP4	ARP4
subunits	Arp5, Arp8	Arp6	Arp5, Arp8	Arp6	Actin	ARP5, ARP9	ARP6
	Taf14	Yaf9		GAS41	GAS41	YAF9A, YAF9B	YAF9A, YAF9B
	Ies2, Ies6		hIes2, hIes6				
		Swc4/Eaf2					SWC4
		Swc2/Vps72		YL-1	YL-1		SWC2
		Swc6/Vps71	ZnF-HIT1				SWC6
		Bdf1		Brd8/TRCp120	Brd8/TRCp120		
		H2A.Z, H2B		H2A.Z, H2B		H2A.Z	H2A.Z
					TRRAP		TRA1
					EPC1		
					ING3		
					MRG15		
					MRGBP		
					hEaf6		
特有亚基 Unique	Ies1, Ies3, Ies 4, Ies5, Nhp10	Swc3,5,7	Amida, NFRKB, MCRS1, FLJ90652, FLJ20309		MRGX, FLJ11730, MRGBP, EPC1, EPC-like		MBD9, AL5-7

表 3 不同物种 INO80/SWR1 复合体组成

Table 3 Compositions of INO80/SWR1 complexes in different species

INO80/SWR1 (inositol requiring 80)复合体 ATPase 亚基结构域 DExx 与 HELICc 之间有一段较长的 氨基酸残基(图 1), 然而这并未影响其 ATPase 的 活性^[13]。

虽然不同染色质重塑复合体 ATPase 亚基在结构上较为保守,但不同染色质重塑复合体具有特有的功能。如 ISWI 和 CHD 复合体主要参与 DNA 复

制后染色质的组装^[14];而 SWI/SNF 复合体则影响 染色质的去组装和核小体稳定蛋白的替换^[15-17]。 INO80/SWR1 复合体则介导组蛋白变体(histone variant)的替换,其中 INO80 复合体介导 H2A 替换 H2A.Z,而 SWR1 复合体则与之相反^[18-20]。组蛋白 H2A 与组蛋白变体 H2A.Z 之间的互换对核小体结构 稳定性至关重要^[21-23]。

图 1 不同染色质重塑复合体 ATPase 亚基结构示意图(引自 Clapier^[2])

Fig. 1 Domain organization of different families ATPase (Cited from Clapier^[2])

目前对染色质重塑复合体的作用机制并不十 分清楚。一般认为,染色质重塑复合体 ATPase 亚 基与 DNA 易位酶(DNA translocases)具有相似之功 能。当染色质重塑复合体 ATPase 亚基与核小体结 合后,其易位酶活性将核小体之间的连接 DNA (linker)推向核小体核心结构,使 DNA 形成一个环 状结构(loop),从而使 DNA 与组蛋白之间结合由"紧 密"状态变为"松散"状态[24-27]。该过程可能同 时产生很多环状结构,这些环状结构只需改变 DNA 与1~2个组蛋白的结合程度即可启动核小体的滑 动。然而,对形成的环状结构大小并不十分清楚,目 前的证据支持该环状结构可能由较多的碱基(约 100 bp)组成^[28]。而关于染色质重塑是如何被精确调 节的还知之甚少,该过程可能与组蛋白的翻译后修 饰有关。如H4尾巴第17~19位残基乙酰化能提高 蟾蜍(Xenopus laevis) ISWI 复合体催化活性^[29-30], 而 H4K16ac 则抑制其活性。对酵母 yISW2 (ISWI 复合体催化亚基)和 yChd1 (CHD 复合体催化亚基) 而言, H4 乙酰化抑制其 ATPase 活性而不响应它与 核小体结合, 然而 H4 乙酰化却能提高酵母 RSC 复 合体(SWI/SFN 类)的重塑活性[31]。

2 植物染色质重塑因子及功能

目前,植物染色质重塑复合体组成尚未完全分 离鉴定,然而遗传和蛋白相互作用数据提示植物中 也存在多种染色质重塑复合体(表 1~3)。因此通过对 染色质重塑复合体同源亚基的研究可从侧面探究植 物染色质重塑复合体的功能。通过与酵母、果蝇和 人的染色质重塑复合体 ATPase 亚基的同源比对, 拟 南芥含 41 个 ATPase 结构域(SNF2-like)基因,可分 为 Snf2-like、Swr1-like、Rad54-like、Rad5/16-like、 SSO1653-like 和 SMARCAL1-like 家族, 每个家族又 可细分为不同亚家族^[32],如 Snf2-like 家族可分为 SWI2/SNF2、Lsh、Iswi、Chd1 和 Mi-2 亚家族, 而 Swr1-like 家族则可分为 Ino80、Swr1 和 Etl1 亚家族。 遗传和蛋白相互作用及 IP-MS 研究表明, 拟南芥 (Arabidopsis thaliana) SWI/SNF 染色质重塑复合体 亚基核心组分与酵母和动物相似,但含有更多同源 基因(如与酵母 SWI3 同源的 SWI3A/B/C/D), 且有 植物特有的亚基(图 2)。这提示植物染色质重塑复合 体可能具有与动物和酵母不同的功能。围绕各组成亚 基的研究表明,这些基因参与细胞分化、器官发育和 激素信号转导等多种生理过程(表 4)。在拟南芥所有 SNF2-N蛋白中 Snf2-like (11 个)和 Swr1-like (4 个) 家族成员在序列上最有可能是植物染色质重塑复合 体催化亚基,围绕这些基因所取得的研究成果也最丰 富。在 Snf2-like 家族中,SWI2/SNF2 亚家族(4 个)、 CHD1-Mi2 亚家族(4 个)、Iswi-Lsh 亚家族(3 个)和 Swr1-like 家族(4 个)成员分别对应于SWI/SNF、CHD、 ISWI 和 INO80/SWR1 复合体催化亚基(表 1~3)。

图 2 植物 SWI/SNF 染色质重塑复合体可能组成(修改自 Jerzmanowski^[33]) Fig. 2 Speculative compositions of plant SWI/SNF complexes (Revised from Jerzmanowski^[33])

2.1 SWI/SNF 复合体

2.1.1 SWI/SNF 复合体催化亚基

SWI/SNF 复合体最早从酵母(Saccharomyces cerevisiae)中分离鉴定,随后发现该类复合体亦广泛存在于动物如果蝇(Drosophila melanogaster)、小鼠 (Mus musculus)和人类中。目前关于植物 SWI/SNF 复合体的具体组成还不十分清楚,但遗传和蛋白相 互作用数据显示该复合体也存在于植物中。在拟南 芥 41 个 ATPase 结构域(SNF2-like)蛋白中,SWI2/SNF2 亚家族成员 AtBRM (BRAHMA)、AtSYD (SPLAYED)、AtCHR23 (CHROMATINREMODELL ING 12)最有可能是植物 SWI/SNF 复合体催化亚基,其中 AtBRM 的可能性最大。首先,仅有 AtBRM 蛋白 C-端具有与酵母 SWI2/SNF2 和果蝇 BRAHMA 蛋白一样的 bromo 结构域;其次,AtBRM 蛋白 N-端

表 4 拟南芥染色质重塑因子的功能分析

Table 4 Functions of chromatin remodeling complexes subunits in Arabidopsis

复合体亚基 Complex subunit	基因 Gene	相互作用蛋白 Interacting protein	功能 Function	参考文献 Reference
SWI2/SNF2	AtBRM/CHR2	AtSWI3C, AtSWI3B KNAT1/BP	Shoot development and flowering Inflorescence architecture	34-35 36
		LEAFY	Floral organ identity	37
		TCP4, AN3, SWP73B	Leaf development	38-39
		PIF1	Chlorophyll biosynthesis	40
		REF6	Control H3K27me3 level	41
		FGT1	Stress-induced chromatin memory	42
		MMS21	Root development	43-44
		PP2C	Abscisic acid responses	45-46
		SE	pri-miRNAs secondary structures	47
	AtSYD/CHR3	BARD1	Shoot apical meristem maintenance	48-49
		AN3	Leaf development	39
		LEAFY	Floral organ identity	37
	CHR12, CHR23		Seed germination	50
			Stress responses	51-52
			Early embryo development	53
SWI3	AtSWI3A		Early embryo development	53
		AtSWI3A, AtSWI3B,		53-54
	AtSWI3B	AtSWI3C, BSH, AtSYD, FCA AtSWI3A, AtSWI3B, AtSWI3C, AtSWI3D, BSH,		53-54
		AtSYD, AtBRM HAB1	ABA signal transduction	55
		IDN2	IncRNA generation	56
		MORC6 SUVH9	DNA methylation	57
		Moree, 50 VII)	Leaf development	58
	AtSWI3C	AtSWI3A AtSWI3B	Plant development	52-54
	hiswise	AtSYD, AtBRM SWP73A, SWP73B, AN3,	Leaf development	39 39
		ARP4/7	CA size l'es	50
	A 49W/12D	KGL2, KGL3	GA signaling	59
CNIE -	AISWISD	ALSWISB	Plant development	53-54
SINFS	взн		Repress SSFs in leaves	60
		A CWII2 A A CWII2D	Plant development	52 54
SWD72	SWD72 A	ALSWIGA, ALSWIGB		53-54 20
SWF75	SWP73B	AtSWI3C, AtSWI3D, AN3, ARP4/7 AtBRM		59
			Leaf and flower development	62
			Root development	63
			Flowering time control	64
			Hypocotyl elongation	65
			Repair of ultraviolet-B-damaged DNA	66
ARPs	ARP4, ARP7	AtSWI3C, SWP73B, AN3	Plant development	39, 67
Ino80	INO80		Controls homologous recombination	69-70
			Plant development	70
Etl1	CHR19	SUVR2	Gene silencing	71
		ARM/TERT	Telomere Maintenance	72
Swr1	PIE1	ARP6, SWC6, SWC2, H2A	Flowering time control	73-74
			Replacement of H2A to H2A.Z	75-76
			immunity	77
			MicroRNA expression	77
SWCs	SWC2	PIE1, SWC6		73-75
	SWC4	SWC6	Leaf cell proliferation and expansion	75
	SWC6/SEF	PIE1, SWC2, SWC4, YAF9A, RVB1, RVB2A, RVB2B, APP4_APP6		75
			Flowering time control	78

复合体亚基	基因	相互作用蛋白	功能	参考文献
Complex subunit	Gene	Interacting protein	Function	Reference
RVBs	RVB1, RVB2A, RVB2B	SWC6		75
ARPs	ARP4	SWC6		75
	ARP6	SWC6		
			Regulates female meiosis	79-80
Yaf9	YAF9A YAF9B	CCA1, HAM1	Leaf cell proliferation and expansion, flowering time control	81-82
CHD1	CHR5		Embryo development	83
			Regulates plant immune responses	84
Mi-2	PICKLE/CHR6		Root development	85-86
			Control H3K27me3 levels	85, 87
			RNA-directed DNA methylation	88
			Vegetative phase change	89-90
		HY5	Hypocotyl cell elongation	91
		SEP3	Floral organ identity	92
		PIF3	Skotomorphogenesis	93
		BZR1	BR-mediated response	93
		DELLAs	GA Signaling	93
Lsh	DDM1/CHR1	MBD5/6/7	DNA Methylation	94
			Heterochromatin Maintenance	95
			Enables methylation of DNA bound to the nucleosome	96
			Telomere maintenance	97
			Control leaf senescence	98
ISWI	CHR11 CHR17		Nucleosome distribution	99
		RINGLET1/2	Flowering time control and flower development	100
	DRD1	RDM1, DMS3	RNA-directed DNA methylation	101
	RAD54		DNA repair	102

续表(Continued)

能与酵母 SWI3 同源蛋白 AtSWI3B 和 AtSWI3C 相 互作用;最后 brm 和 swi3c 突变体具有相似表型^[34]。

AtBRM 主要在分生组织和幼嫩器官中表达,其 功能缺失导致 2 000 余基因中的一半下调而另一半 上调表达[104],这表明 AtBRM 具有双重功能。AtBRM 敲减的植株矮小,在长日照下叶片卷曲,花器官发 育异常;在长日照和短日照下均出现早花现象[33]。 AtBRM 缺失突变体中,有相当一部分植株在短日照 下不开花,这提示 AtBRM 在拟南芥开花过程的作 用十分复杂^[35]。进一步研究表明, AtBRM 除了影响 光周期响应基因的表达外,还抑制 FLC 和 SVP 的表 达^[104-105]。在叶片中, AtBRM 分别与 TCP4 和 AN-GUSTIFOLIA3 (AN3)相互作用,共同调控叶片发育 相关基因的表达[38-39]。我们的研究表明,在花序轴 中 AtBRM 与转录因子 BREVIPEDICELLUS (BP) 相互作用,直接调节 KNAT2 和 KNAT6 的表达来调 控花序轴发育^[36]。在黑暗中,AtBRM 与 PHY-INTER-ACTING FACTOR 1 (PIF1)相互作用抑制 PROTO-CHLOROPHYLLIDE OXIDOREDUCTASE C (PORC) 表达从而抑制叶绿素合成^[40]。除转录因子外, AtBRM 亦可与其他核蛋白相互作用。如热胁迫记忆激活因

子 FORGETTER1 (FGT1)与 AtBRM 相互作用,维 持下游热胁迫相关基因处于转录激活状态[42]。而植 物H3K27 去甲基化酶 RELATIVE OF EARLY FLO-WERING 6 (REF6)通过招募 AtBRM 结合于下游基 因 CTCTGYTY 基序降低其 H3K27me3 水平激活转 录^[41]。这与动物中 BRM 拮抗 PcG 蛋白(polycomb group proteins)的作用一致。PcG蛋白作为表观遗传 抑制因子维持细胞内非活化基因的抑制状态,其分 别通过与 Polycomb Repressive Complex 1 (PRC1) 和 PRC2 复合体相互作用建立和维持染色质抑制状 态。PRC2 复合体与目标基因结合后,催化这些基 因组蛋白 H3K27me3 修饰,从而抑制基因表达。这 与我们在拟南芥主根发育过程观察到 AtBRM 拮抗 PcG 蛋白影响生长素运输蛋白基因 PINs 表达,从 而影响主根根冠干细胞微环境维持的结果一致[43]。 最近研究表明,翻译后修饰对染色质重塑过程也起 着重要作用,AtBRM 作为 ABA 信号途径核心组分 SnRK (蔗糖非依赖1蛋白激酶)和 PP2C (蛋白磷酸 酶 2C)的底物来调控 ABA 反应^[46];我们亦观察到, METHYL METHANE SULFONATE SENSITIVITY 21 (MMS21)通过 SUMO 化修饰 AtBRM 调节其蛋白

稳定性参与主根发育^[43]。有趣的是,新的研究结果 表明microRNA前体(pri-miRNAs)也能与AtBRM相 互作用,AtBRM作为microRNA前体加工复合体 SE (MICROPRO CESSOR COMPONENT SERRATE) 组分改变microRNA前体二级结构以便后续通过 DCL1和HYL1进一步加工^[47]。

对拟南芥 SWI2/SNF2 亚家族其他成员的研究 表明, AtSYD 参与顶端分生组织(SAM)活性的维持。 syd 缺失突变体植株矮小, 生长缓慢、叶片极性和 SAM 缺失。其作用机理是, AtSYD 通过 WUS 途径 影响 SAM 的维持,因为 AtSYD 可与 BARD1 相互 作用结合于 WUS 启动子直接结合而调节 WUS 表达, 后者促进 SAM 中干细胞活性^[48-49]。进一步研究还 表明, AtSYD 通过调控 JA 和 ET 信号相关基因参 与植物的生物胁迫响应[106],而这种胁迫大部分是通 过抑制 SNC1 (SUPPRESSOR OF NPR1, CONSTITU-TIVE 1)实现的^[107]。对 AtCHR23 和 AtCHR12 在植 物发育中的功能还不十分清楚。过表达 AtCHR23 和 AtCHR12 均抑制植物种子萌发^[50],在其他发育过程 AtCHR23 过表达显著抑制植物生长,而 AtCHR12 过表达表型则不明显[51];但在胁迫方面,二者表型 相似[52-53]。

2.1.2 SWI/SNF 复合体非催化亚基-SWI3 类蛋白

拟南芥基因组编码 4 个 SWI3 同源蛋白,分别 为 AtSWI3A、AtSWI3B、AtSWI3C 和 AtSWI3D, 在 结构上他们均含有 SWIRM、SANT 和 Leucine Zipper 结构域。进化分析表明植物 SWI3 类蛋白可明显分 为两簇,即SWI3A/B和SWI3C/D,这也与AtSWI3A、 AtSWI3B、AtSWI3C 和 AtSWI3D 的生物学功能有 所差异相符。AtSWI3A 与AtSWI3B 突变导致植物胚 在早期发育过程异常,而AtSWI3C和AtSWI3D突 变使得植物叶片和花器官发育异常[53]。有意思的是 AtSWI3C 突变还导致植物主根发育异常,而其他 3 个突变体则未观察到相应表型[53]。酵母双杂交结果 表明,AtSWI3A可分别与AtSWI3A、AtSWI3B、 AtSWI3C、BSH、AtSYD 和 FCA 相互作用[53-54], 提 示AtSWI3A、BSH和AtSYD可能形成1个复合体。 然而关于 AtSWI3A 与其他蛋白相互作用的生物学 意义目前并不清楚。对 AtSWI3B 而言,除分别可与 AtSWI3A、AtSWI3B、AtSWI3C、AtSWI3D、BSH、 AtSYD、AtBRM 相互作用外,还分别与 type 2C 类 磷酸酶(phosphatase type 2C) HAB1 (HYPERSENSI-TIVE TO ABA1)和长链非编码 RNA 结合蛋白 IDN2 相互作用,参与ABA 信号和长链非编码 RNA 形成^[55-56]。进一步研究还表明,AtSWI3B (包括 At-SWI3C 和 AtSWI3D)与 MORC6 (microrchidia 6)、 SUVH9 [SU(VAR)3-9 homolog]和 IDN2 形成复合体, 通过 RNA 指导的 DNA 甲基化(RdDM, RNA-directed DNA methylation)介导的途径调控 DNA 的甲基化^[57]。 在叶片发育过程,AtSWI3B 通过调控生长素代谢酶 基因 IAMT1 (IAA carboxyl methyltransferase 1)的染 色质"构象"调节其表达,从而参与叶片发育^[58]。

AtSWI3C 也分别与 AtSWI3A、AtSWI3B、AtSYD 和 AtBRM 相互作用,进一步研究表明其还可与 转录因子 AN3 和酵母 SWI/SNF 复合体同源蛋白 SWP73B 以及 ARP4/7 (actin-related protein4/7)相互 作用调控叶片发育^[39]。同时,AtSWI3C 通过与 DELLA 蛋白 RGL2 和 RGL3 相互作用促进 *GID1* (GIBBERELLIN-INSENSITIVE DWARF1)和 *GA3ox* (GIBBERELLIN 3-OXIDASE)表达,参与 GA 信号 转导^[59]。相对于其他 3 个 AtSWI3 蛋白,AtSWI3D 的功能还知之甚少,其缺失植株的表型与 *AtBRM* 和 *AtSWI3C* 缺失突变体相似,出现叶片卷曲,花器官 发育异常和育性降低等表型^[53]。

2.1.3 SWI/SNF 复合体非催化亚基-SNF5 类蛋白

在酵母中, SNF5蛋白对染色质的装配和基因 启动子与SWI/SNF复合体的结合至关重要^[108],其 C端保守的200个氨基酸残基形成两个重复结构负 责与SWI/SNF复合体其他亚基和其他因子如cyclin E/CDK2之间的相互作用。动物发生Snf5突变往往 会导致癌症。在拟南芥中,SNF5同源蛋白BSH (BUSHY GROWTH)仅由1个基因编码,其可与 AtSWI3A和AtSWI3B相互作用,且在酵母中异源 表达,可互补酵母Snf5突变体表型^[61]。利用反义 RNA技术降低BSH表达导致植物顶端分生组织减 小且出现不育表型^[61]。T-DNA插入突变体虽然导致 种子贮存基因在幼苗中异位表达,然而植株却未出 现可以看到的表型^[60]。这可能是由于T-DNA插入 位置在BSH的C端,仅破坏BSH蛋白C端结构使 得BSH还保留部分功能。

2.1.4 SWI/SNF 复合体非催化亚基 SWP73 类蛋白

酵母 SWI/SNF 复合体亚基 SWP73 对 SWI/SNF 复合体在转录过程的作用至关重要。在植物中, 拟 南芥基因组编码两个 SWP73 蛋白: SWP73A 和 SWP73B, 二者氨基酸序列相似度高达 83.7%。蛋 白互作分析表明 SWP73A 仅可与 AtSWI3C 相互作

用,而 SWP73B 不仅可以与 AtSWI3C 和 AtSWI3D 相互作用,还能与 AtBRM 和 ARP4/7 以及转录因 子 AN3 相互作用^[39]。生物学功能分析表明,*SWP73A* 和 *SWP73B* 功能亦有所差异,*SWP73A* 突变植物未 出现可见表型,而 *SWP73B* 突变导致植物根^[63]、叶 片和花发育异常^[62]和开花时间推迟^[64]。进一步研究 表明,*SWP73B* 通过促进根中细胞分裂素的合成促 进根中分生组织的维持^[63];同时通过改变染色质组 蛋白修饰水平和 H2A.Z 的替换影响 *FLC* 表达从而 参与植物成花控制^[64]。最新的研究表明,SWP73B 通过直接结合于下游基因的 G-box 区域调节其表达 抑制下胚轴伸长,但与 SWP73B 直接结合的基因与 PIF4 结合的基因大部分是不同的^[65]。在胁迫方面, *SWP73B* 还参与 UV-B 介导的 DNA 损伤修复,然而 其作用机制还不清楚^[66]。

2.1.5 SWI/SNF 复合体非催化亚基 ARP 类蛋白

酵母和动物 SWI/SNF 类复合体均含有一类 ARPs (actin-related proteins)蛋白。在酵母中, ARPs 一共有 10个(ARP1~10), 其序列与酵母 actin 相似 性按编号递减。在酵母所有 ARPs 中, ARP7 和 ARP9 是 SWI/SNF 类(包括 RSC)复合体组分,而 ARP4、 ARP5 和 ARP8 为 INO80/SWR1 复合体组分。动物 SWI/SNF 类仅含有一个 ARP (Baf53/BAP55), 与酵 母 ARP4 同源。虽然在结构上 ARPs 与 actin 相似均 含有 ATP/ADP-binding pocket (actin fold)结构,但 除 ARP4 外,其他所有 ARPs 均没有像 actin 那样的 ATPase 活性。生物界所有 ARPs 可分为 11 类,其 中 ARP4~ARP9 家族成员大多定位于细胞核^[107]。拟 南芥基因组编码9个ARPs(ARP2~ARP9,其中ARP4 包含2个同源基因ARP4和ARP4A),其中ARP4~ ARP9 定位于细胞核[111]。CoIP-MS 分析表明在拟南 芥所有 ARPs 中, ARP4 和 ARP7 为 SWI/SNF 复合 体组分^[39],而后续的研究表明 ARP4 也是 INO80/ SWR1 复合体的组分。

虽然在正常情况下, ARP4 和 ARP7 定位于细胞核, 但在有丝分裂过程, 它们与染色质组装无关, 且也可以定位于细胞质^[109]。与 ARP7 相似, ARP4 缺失突变导致植物不育, 敲减突变体使植株生长发育受阻并出现早花、花衰老推迟和花器官发育异常等表型^[67-68]。

2.2 INO80/SWR1 复合体

INO80 基因最早从筛选调控酵母磷脂生物合成

的突变体中分离,后续生化分析表明其与其他 14 个亚基组成复合体(表3)。随后,*INO80*同源基因*Swr1* 亦在酵母中发现,其主要催化组蛋白变体 Htz1 与 H2A 之间的交换。进一步研究表明,*Swr1* 也与其他 蛋白形成复合体,其中 Rvb1、Rvb2、Arp4 和 actin 亚基与 INO80 复合体共有(表 3)。拟南芥中编码 4 个(包括 PIE1、INO80、CHR19 和 CHR10)与 INO80 和 Swr1 类复合体催化亚基同源蛋白,目前仅对 CHR19、INO80 和 PIE1 的功能有所了解。

CHR19 与 SUVR2 [SU(VAR)3-9-like histone methyltransferase]相互作用,通过依赖于 RdDM 和 不依赖于 RdDM 两条途径参与 DNA 甲基化而维持 基因抑制状态^[71]。同时 CHR19 还可与 ARM (arma-dillo/β-catenin-like repeat containing protein)端粒末 端转移酶核心亚基 TERT (telomerase reverse transcriptase)相互作用形成复合体,提示 CHR19 可能也 参与端粒的维持^[73]。*INO80* 突变导致拟南芥中 DNA 同源重组降低,但却不影响其他途径的 DNA 修复 过程^[67-68]。进一步研究表明,*INO80* 突变导致拟南 芥开花时间推迟,植株及各种器官变小^[70]。

目前的研究认为拟南芥 SWR1 复合体最少由 10 个亚基组成(PIE1、SWC2、SWC4、SWC6、YAF9A、 RVB1、RVB2A、RVB2B、ARP4 和 ARP6),其中 PIE1 是催化亚基^[73],首先,PIE1 可与 SWC2、SWC6 和 ARP6 以及组蛋白 H2A 相互作用调控植物开花和发 育^[73-74];其次,与 PIE1 形成的复合体在植物调节 基因表达过程中也负责 H2A.Z 变体的交换^[75-77]。然 而有意思的是,在植物免疫过程中,PIE1 和 SWC6 突变导致植物基本抗性降低,而 ARP6 突变则增加 抗性^[76],这提示在不同的生理过程中植物 SWR1 复 合体亚基的功能可能是不一样的。进一步研究表 明,PIE1 通过促进 miR156 和 miR164 表达,抑制 二者目标基因表达参与植物发育^[77]。

对植物INO80/SWR1复合体非催化亚基RVB1、 RVB2A和RVB2B的功能还知之甚少,但质谱鉴定 表明,其能与SWC6形成复合体^[75]。对SWC4的 研究表明其参与植物雄配子和胚发育,且对叶片细 胞的分化和伸长至关重要^[75],同时质谱鉴定表明其 与SWC6相互作用。利用SWC6-MYC融合蛋白进 行CoIP结合质谱分析,SWC6与PIE1、SWC2、SWC4、 YAF9A、RVB1、RVB2A、RVB2B、ARP4和ARP6 形成复合体^[75],其 pre-messenger RNA 通过Skiinteracting protein (SKIP)介导剪切调控FLC、MAF4 和 *MAF5* 表达参与植物开花时间决定^[78]。ARP6 除 与 PIE1 和 SWC6 相互作用参与 PIE1 和 SWC6 相似 功能外,还通过促进 *DMC1* (DISRUPTED MEIOTIC cDNA1)表达促进雌配子的减数分裂^[79],进一步研究 表明该过程是细胞色素 P450 基因 *KLU* (KLUH/ CYP78A5)通过 *ARP6* 促进 *WRKY28* 表达而实现^[80]。

拟南芥中有2个与酵母INO80/SWR1复合体亚基Yaf9 同源的基因: YAF9A和YAF9B。YAF9A和YAF9B在功能上有部分冗余,其中YAF9A能与SWC6相互作用,且YAF9A通过提高FLC组蛋白H4乙酰化水平促进其表达,从而降低FT和SOC1表达,抑制开花^[81]。最新的研究表明,YAF9A和YAF9B通过调节细胞伸长和分化来影响植株发育,且其调控开花还存在一条独立于FLC的途径^[82],虽然YAF9s可通过维持(并不促进)H2A.Z变体与FLC基因区的结合和FLC组蛋白H4乙酰化水平直接促进FLC表达^[82]。

2.3 CHD 复合体

CHD 基因家族成员在结构上除含有 DEAD/Hrelated ATP 酶结构域外,其 N 端还含有一段串联 chromodomains 结构域。所有 CHD 蛋白分为 3 类: CHD1 和 CHD2 在 C 端含有 DNA 结合区; CHD3 和 CHD4 的 C 端缺少 DNA 结合区,其 N 端有一对 PHD 结构; CHD5~CHD9 的 C 端含有多余结构。 酵母基因组仅编码 1 个 CHD 蛋白 CHD1,其可与 组 蛋 白乙酰转移酶复合体的(SAGA and SLIK complexes)亚基相互作用,并通过其 PHD 结构域识 别 H3K4me3 位点并与转录激活区结合促进下游基 因转录延伸和剪切。

除催化亚基外,对拟南芥 CHD 复合体的其他 亚基我们还知之甚少。拟南芥基因组编码 4 个 CHD 类催化亚基,分别为 CHR5、PICKLE/CHR6、CHR4 和 CHR7。其中 CHR5 通过改变 SNC1 核小体"构象" 正调控 SNC1 表达参与植物抗病过程^[84]。在种子发 育过程 CHR5 通过结合于 ABI3 和 FUS3 启动子促 进二者表达,调控胚的发育^[83]。有意思的是,在这个 过程 PICKLE 拮抗 CHR5 的功能^[83],这也与 PICKLE 在萌发阶段抑制种子胚性功能一致^[112]。与 AtBRM 相似,PICKLE 通过与拮抗 PcG 蛋白 CLF (CURLY LEAF)的功能促进主根中分生组织的活性^[83],而通 过 IAA14 介导抑制侧根起始基因 ARF7 和 ARF19 表 达抑制侧根的起始^[86]。除在根中外,PICKLE 还在叶

片和花器官的发育过程拮抗CLF,使其调控基因H3-K27me3 水平降低[113]。然而在 14 d 的幼苗中, PICKLE 却促进其调控基因 H3K27me3 表达水平[87],这提示 在植物不同的发育阶段 PICKLE 的功能不一样。进 一步研究表明, PICKLE 可与 MADS-Box 转录因子 SEP3 相互作用,提示在 PICKLE 影响花器官发育 可能还依赖于 SEP3^[90]。PICKLE 通过影响孢子体和 配子体发育,调控植物的生殖生长[114],而 HY5 通 过招募 PICKLE 提高下游细胞伸长基因 H3K27me3 水平抑制其表达,从而抑制下胚轴伸长[91]。另外, PICKLE 分别通过与 PIF3、BZR1 和 DELLAs 相互 作用参与暗形态建成、BR 和 GA 信号传导过程^[93],从 而将后三者整合在一起。进一步研究表明, PICKLE 通过抑制 DELLAs 的活性参与植物生长发育阶段的 转化^[89]。除 GA 信号外, PICKLE 还通过直接促进 MIR156A/MIR156C的H3K27me3水平抑制其表达 从而促进植物营养阶段转变(vegetative phase change)(从童年到成熟)^[90]。除调控 H3K27me3 水平 外, PICKLE 还通过参与 RNA 指导的 DNA 甲基化 (RdDM, RNA-directed DNA methylation)抑制下游 基因表达[88]。

2.4 ISWI 复合体

ISWI 蛋白(imitation SWI)最早从果蝇胚胎细胞 提取的核小体重塑活性过程中分离鉴定的,其为一 类 DEAD/H-related ATP 酶,且还含有 SANT 和 SLIDE 结构域。在体外加入模板,果蝇 ISWI 复合 体促进转录,而在体内 ISWI 复合体亚基突变稳定 抑制同源基因(homeotic gene)表达。目前对植物 ISWI 类复合体的组成还知之甚少,对催化亚基的研 究表明其参与多种生理过程。其中 CHR11 和 CHR17 通过共同调控基因区(gene body)核小体之间的"距 离"(nucleosome spacing)调节下游基因表达[99]。同时 CHR11和CHR17还分别通过与含DDT结构域蛋白 RINGLET1 (RLT1)和 RLT2 相互作用调控开花时间 和花器官发育^[100]。对该家族另一个成员 DECREASE IN DNA METHYLATION 1 (DDM1)的研究表明,其 主要参与DNA的甲基化过程。DDM1通过与Methyl-CpG binding domains (MBDs)相互作用改变后者在 染色质上的定位影响 DNA 的甲基化[94],而一般认 为 MBDs 通过影响组蛋白的甲基化参与 DNA 的甲 基化。与 RdDM 不同, DDM1 参与的 DNA 甲基化 主要由 DNA 甲基转移酶 CMT2 介导[95], 二者通过 提高异染色质基因(如 TE)不同区段的 DNA 甲基化 水平维持基因沉默。事实上, DDM1 是通过影响异 染色质 H1 构象使 CMT2 更加容易结合于异染色质 DNA 而实现 DNA 甲基化修饰的^[95]。进一步研究表 明, DDM1 还可促进甲基化的 DNA 在核小体上缠 绕形成更为紧密的染色质结构^[96]。有意思的是, DDM1 突变体在连续种植 5 代内,其端粒大小与野 生型相似,而在第 6 和以后的世代中端粒大小显著 减小^[97],这似乎说明在 DDM1 介导的端粒维持有一 定的时间剂量效应。同时 DDM1 突变体亦出现叶片 延迟衰老的表型,提示 DDM1 还参与叶片发育,然 而对于具体机制仍不清楚^[98]。

2.5 其他 Snf2-like 蛋白

目前对其他 Snf2-like 蛋白的功能还不是十分 清楚,根据同源性分析这些蛋白(41个中的大部分) 并不能归于以上复合体中的任意一种。但通过突变 体表型分析表明某些成员也有重要的功能。Rad54like 家族成员 DRD1/CHR35 (DEFECTIVE IN RNA-DIRECTED DNA METHYLATION1)与 RDM1 (RNA-DIRECTED DNA METHYLATION 1)和 DMS3 (DEFECTIVE IN MERISTEM SILENCIN G3)形成复 合体(DDR complex),通过 polymerase V 介导参与 RdDM^[101]。而该家族另一成员 Rad54/CHR25 则通 过同源重组途径参与 DNA 的修复^[102]。

与拟南芥相比,其他物种仅有少数 Snf2-like 蛋白被研究。如水稻(Oryza sativa) DRD1 同源基因 OsDDM1a 和 OsDDM1b 也参与 DNA 的甲基化^[115],而 CHD3 家族成员 CHR729 通过 GA 信号途径调控 水稻幼苗发育^[116]。小番茄('Micro-Tom')过表达 Snf2-like 基因(SlCHR1)可抑制生长发育^[117]。

3 结语

染色质重塑作为表观遗传调控的重要内容在 真核生物 DNA 复制、转录、重组和 DNA 修复等过 程中起到重要的作用。对植物染色质重塑复合体亚 基(染色质重塑因子)的研究表明,它们参与细胞分 化、器官发育和激素信号转导等多种生理过程。然 而相对于酵母和动物,植物染色质重塑的研究还相 对滞后,其作用机制并不十分清楚,最主要的问题 是植物染色质重塑是如何识别其作用位点的。在酵 母和动物中的研究结果表明该过程与组蛋白的修 饰有关,这就为我们后续研究植物染色质重塑和组 蛋白修饰之间的 Cross-Talk 指明了方向。同时综上 所述,染色质重塑因子在不同的发育(或基因调节) 过程与不同的因子(包括转录因子和核蛋白等)相互 作用以及染色质重塑因子的翻译后修饰将极大拓 展其调控基因表达的内涵。

参考文献

- LI B, CAREY M, WORKMAN J L. The role of chromatin during transcription [J]. Cell, 2007, 128(4): 707–719. doi: 10.1016/j.cell.2007. 01.015.
- [2] CLAPIER R, CAIRNS B R. The biology of chromatin remodeling complexes [J]. Annu Rev Biochem, 2009, 78(1): 273–304. doi: 10. 1146/annurev.biochem.77.062706.153223.
- [3] HARGREAVES D C, CRABTREE G R. ATP-dependent chromatin remodeling: Genetics, genomics and mechanisms [J]. Cell Res, 2011, 21(3): 396–420. doi: 10.1038/cr.2011.32.
- [4] SMITH C L, HOROWITZ-SCHERER R, FLANAGAN J F, et al. Structural analysis of the yeast SWI/SNF chromatin remodeling complex
 [J]. Nat Struct Biol, 2003, 10(2): 141–145. doi: 10.1038/nsb888.
- [5] EISEN J A, SWEDER K S, HANAWALT P C. Evolution of the SNF2 family of proteins: Subfamilies with distinct sequences and functions
 [J]. Nucl Acids Res, 1995, 23(14): 2715–2723. doi: 10.1093/nar/23. 14.2715.
- [6] KIDDER B L, PALMER S, KNOTT J G SWI/SNF-brg1 regulates selfrenewal and occupies core pluripotency-related genes in embryonic stem cells [J]. Stem Cells, 2009, 27(2): 317–328. doi: 10.1634/stem cells.2008-0710.
- [7] KASTEN M, SZERLONG H, ERDJUMENT-BROMAGE H, et al. Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14 [J]. EMBO J, 2004, 23(6): 1348–1359. doi: 10.1038/sj.emboj.7600143.
- [8] ZHOU Y G, GRUMMT I. The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing [J]. Curr Biol, 2005, 15(15): 1434–1438. doi: 10.1016/j.cub. 2005.06.057.
- [9] BOYER L A, LATEK R R, PETERSON C L. The SANT domain: A unique histone-tail-binding module? [J]. Nat Rev Mol Cell Biol, 2004, 5(2): 158–163. doi: 10.1038/nrm1314.
- [10] THOMPSON P M, GOTOH T, KOK M, et al. CHD5, a new member of the chromodomain gene family, is preferentially expressed in the nervous system [J]. Oncogene, 2003, 22(7): 1002–1011. doi: 10.1038/sj. onc.1206211.

- [11] PRAY-GRANT M G, DANIEL J A, SCHIELTZ D, et al. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIKdependent acetylation [J]. Nature, 2005, 433(7024): 434–438. doi: 10. 1038/nature03242.
- [12] FLANAGAN J F, MI L Z, CHRUSZCZ M, et al. Double chromodomains cooperate to recognize the methylated histone H3 tail [J]. Nature, 2005, 438(7071): 1181–1185. doi: 10.1038/nature04290.
- [13] BAO Y H, SHEN X T. INO80 subfamily of chromatin remodeling complexes [J]. Mutat Res, 2007, 618(1/2): 18–29. doi: 10.1016/j.mrf mmm.2006.10.006.
- [14] CORONA D F V, TAMKUN J W. Multiple roles for ISWI in transcription, chromosome organization and DNA replication [J]. Biochim Biophys Acta, 2004, 1677(1/2/3): 113–119. doi: 10.1016/j.bbaexp. 2003.09.018.
- [15] WHITEHOUSE I, FLAUS A, CAIRNS B R, et al. Nucleosome mobilization catalysed by the yeast SWI/SNF complex [J]. Nature, 1999, 400(6746): 784–787. doi: 10.1038/23506.
- [16] PHELAN M L, SCHNITZLER G R, KINGSTON R E. Octamer transfer and creation of stably remodeled nucleosomes by human SWI-SNF and its isolated ATPases [J]. Mol Cell Biochem, 2000, 20(17): 6380–6389. doi: 10.1128/mcb.20.17.6380-6389.2000.
- [17] LORCH Y, ZHANG M C, KORNBERG R D. Histone octamer transfer by a chromatin-remodeling complex [J]. Cell, 1999, 96(3): 389–392. doi: 10.1016/s0092-8674(00)80551-6.
- [18] MIZUGUCHI G, SHEN X T, LANDRY J, et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex [J]. Science, 2004, 303(5656): 343–348. doi: 10.1126/science. 1090701.
- [19] PAPAMICHOS-CHRONAKIS M, WATANABE S, RANDO O J, et al. Global regulation of H2A.Z localization by the INO80 chromatinremodeling enzyme is essential for genome integrity [J]. Cell, 2011, 144(2): 200–213. doi: 10.1016/j.cell.2010.12.021.
- [20] LUK E, RANJAN A, FITZGERALD P C, et al. Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome [J]. Cell, 2010, 143(5): 725–736. doi: 10.1016/j. cell.2010.10.019.
- [21] JIN C Y, FELSENFELD G. Nucleosome stability mediated by histone variants H3.3 and H2A.Z [J]. Genes Dev, 2007, 21(12): 1519–1529. doi: 10.1101/gad.1547707.
- [22] JIN C Y, ZANG C Z, WEI G, et al. H3.3/H2A.Z double variantcontaining nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions in the human genome [J]. Nat Genet, 2009, 41(8): 941–945. doi: 10.1038/ng.409.

- [23] KUMAR S V, WIGGE P A. H2A.Z-containing nucleosomes mediate the thermosensory response in *Arabidopsis* [J]. Cell, 2010, 140(1): 136–147. doi: 10.1016/j.cell.2009.11.006.
- [24] FITZGERALD D J, DELUCA C, BERGER I, et al. Reaction cycle of the yeast Isw2 chromatin remodeling complex [J]. EMBO J, 2004, 23 (19): 3836–3843. doi: 10.1038/sj.emboj.7600364.
- [25] SAHA A, WITTMEYER J, AIRNS B R. Chromatin remodelling: The industrial revolution of DNA around histones [J]. Nat Rev Mol Cell Biol, 2006, 7(6): 437–447. doi: 10.1038/nrm1945.
- [26] ZOFALL M, PERSINGER J, KASSABOV S R, et al. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome [J]. Nat Struct Mol Biol, 2006, 13(4): 339–346. doi: 10. 1038/nsmb1071.
- [27] STROHNER R, WACHSMUTH M, DACHAUER K, et al. A 'loop recapture' mechanism for ACF-dependent nucleosome remodeling [J]. Nat Struct Mol Biol, 2005, 12(8): 683–690. doi: 10.1038/nsmb966.
- [28] ZHANG Y L, SMITH C L, SAHA A, et al. DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC [J]. Mol Cell, 2006, 24(4): 559–568. doi: 10.1016/j.molcel.2006.10.025.
- [29] CLAPIER C R, LÄNGST G, CORONA D F V, et al. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI [J]. Mol Cell Biol, 2001, 21(3): 875–883. doi: 10.1128/mcb.21.3.875-883.2001.
- [30] SHIBA T, KAKUDA S, OKA S, et al. Molecular mechanisms in acceptor substrate recognition of a human glucuronyltransferase, GlcAT-P, an enzyme critical in the biosynthesis of the carbohydrate epitope HNK-1 [J]. Seikagaku, 2005, 77(2): 153–158.
- [31] FERREIRA H, FLAUS A, OWEN-HUGHES T. Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms [J]. J Mol Biol, 2007, 374(3): 563–579. doi: 10.1016/j. jmb.2007.09.059.
- [32] KNIZEWSKI L, GINALSKI K, JERZMANOWSKI A. Snf2 proteins in plants: Gene silencing and beyond [J]. Trends Plant Sci, 2008, 13 (10): 557–565. doi: 10.1016/j.tplants.2008.08.004.
- [33] JERZMANOWSKI A. SWI/SNF chromatin remodeling and linker histones in plants [J]. BBA Gene Struct Expr, 2007, 1769(5/6): 330– 345. doi: 10.1016/j.bbaexp.2006.12.003.
- [34] FARRONA S, HURTADO L, BOWMAN J L, et al. The Arabidopsis thaliana SNF2 homolog AtBRM controls shoot development and flowering [J]. Development, 2004, 131(20): 4965–4975. doi: 10.1242/ dev.01363.
- [35] HURTADO L, FARRONA S, REYES J C. The putative SWI/SNF complex subunit BRAHMA activates flower homeotic genes in *Arabidopsis thaliana* [J]. Plant Mol Biol, 2006, 62(1/2): 291–304. doi:

10.1007/s11103-006-9021-2.

- [36] ZHAO M L, YANG S G, CHEN C Y, et al. Arabidopsis BREVI-PEDICELLUS interacts with the SWI2/SNF2 chromatin remodeling ATPase BRAHMA to regulate KNAT2 and KNAT6 expression in control of inflorescence architecture [J]. PLoS Genet, 2015, 11(3): e1005125. doi: 10.1371/journal.pgen.1005125.
- [37] WU M F, SANG Y, BEZHANI S, et al. SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors
 [J]. Proc Natl Acad Sci USA, 2012, 109(9): 3576–3581. doi: 10.1073/ pnas.1113409109.
- [38] EFRONI I, HAN S K, KIM H J, et al. Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses [J]. Dev Cell, 2013, 24(4): 438–445. doi: 10.1016/j.devcel.2013.01.019.
- [39] VERCRUYSSEN L, VERKEST A, GONZALEZ N, et al. ANGUSTI-FOLIA3 binds to swi/snf chromatin remodeling complexes to regulate transcription during *Arabidopsis* leaf development [J]. Plant Cell, 2014, 26(1): 210–229. doi: 10.1105/tpc.113.115907.
- [40] ZHANG D, LI Y H, ZHANG X Y, et al. The SWI2/SNF2 chromatinremodeling ATPase BRAHMA regulates chlorophyll biosynthesis in *Arabidopsis* [J]. Mol Plant, 2017, 10(1): 155–167. doi: 10.1016/j.molp. 2016.11.003.
- [41] LI C L, GU L F, GAO L, et al. Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in *Arabidopsis* [J]. Nat Genet, 2016, 48(6): 687–693. doi: 10.1038/ng.3555.
- [42] BRZEZINKA K, ALTMANN S, CZESNICK H, et al. Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling [J]. Elife, 2016, 5: e17061. doi: 10.7554/elife. 17061.
- [43] YANG S G, Li C L, ZHAO L M, et al. The Arabidopsis SWI2/SNF2 chromatin remodeling ATPase BRAHMA targets directly to *PINs* and is required for root stem cell niche maintenance [J]. Plant Cell, 2015, 27(6): 1670–1680. doi: 10.1105/tpc.15.00091.
- [44] ZHANG J J, LAI J B, WANG F G, et al. A SUMO ligase AtMMS21 regulates the stability of the chromatin remodeler BRAHMA in root development [J]. Plant Physiol, 2017, 173(3): 1574–1582. doi: 10. 1104/pp.17.00014.
- [45] HAN S K, SANG Y, RODRIGUES A, et al. The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in *Arabidopsis* [J]. Plant Cell, 2012, 24 (12): 4892–4906. doi: 10.1105/tpc.112.105114.
- [46] PEIRATS-LLOBET M, HAN S K, GONZALEZ-GUZMAN M, et al. A direct link between abscisic acid sensing and the chromatin-remodeling

ATPase BRAHMA via core ABA signaling pathway components [J]. Mol Plant, 2016, 9(1): 136–147. doi: 10.1016/j.molp.2015.10.003.

- [47] WANG Z Y, MA Z Y, CASTILLO-GONZÁLEZ C, et al. SWI2/SNF2 ATPase CHR2 remodels pri-miRNAs via serrate to impede miRNA production [J]. Nature, 2018, 557(7706): 516–521. doi: 10.1038/s415 86-018-0135-x.
- [48] HAN P, LI Q, ZHU Y X. Mutation of Arabidopsis BARD1 causes meristem defects by failing to confine WUSCHEL expression to the organizing center [J]. Plant Cell, 2008, 20(6): 1482–1493. doi: 10. 1105/tpc.108.058867.
- [49] KWON C S, CHEN C B, WAGNER D. WUSCHEL is a primary target for transcriptional regulation by SPLAYED in dynamic control of stem cell fate in *Arabidopsis* [J]. Genes Dev, 2005, 19(8): 992–1003. doi: 10. 1101/gad.1276305.
- [50] LEEGGANGERS H A C F, FOLTA A, MURAS A, et al. Reduced seed germination in *Arabidopsis* over-expressing SWI/SNF2 ATPase genes [J]. Physiol Plant, 2015, 153(2): 318–326. doi: 10.1111/ppl.12231.
- [51] FOLTA A, SEVERING E I, KRAUSKOPF J, et al. Over-expression of *Arabidopsis AtCHR23* chromatin remodeling ATPase results in increased variability of growth and gene expression [J]. BMC Plant Biol, 2014, 14: 76. doi: 10.1186/1471-2229-14-76.
- [52] MLYNÁROVÁ L, NAP J P, BISSELING T. The SWI/SNF chromatinremodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress [J]. Plant J, 2007, 51(5): 874–885. doi: 10.1111/j.1365-313x.2007.03185.x.
- [53] SARNOWSKI T J, RIOS G, JASIK J, et al. SWI3 subunits of putative SWI/SNF chromatin-remodeling complexes play distinct roles during *Arabidopsis* development [J]. Plant Cell, 2005, 17(9): 2454–2472. doi: 10.1105/tpc.105.031203.
- [54] BEZHANI S, WINTER C, HERSHMAN S, et al. Unique, shared, and redundant roles for the *Arabidopsis* SWI/SNF chromatin remodeling ATPases BRAHMA and SPLAYED [J]. Plant Cell, 2007, 19(2): 403– 416. doi: 10.1105/tpc.106.048272.
- [55] SAEZ A, RODRIGUES A, SANTIAGO J, et al. HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in *Arabidopsis* [J]. Plant Cell, 2008, 20(11): 2972–2988. doi: 10.1105/tpc.107.056705.
- [56] ZHU Y Y, ROWLEY M J, BÖHMDORFER G, et al. A SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing [J]. Mol Cell, 2013, 49(2): 298–309. doi: 10. 1016/j.molcel.2012.11.011.
- [57] LIU Z W, ZHOU J X, HUANG H W, et al. Two components of the RNA-directed DNA methylation pathway associate with MORC6 and

silence loci targeted by MORC6 in *Arabidopsis* [J]. PLoS Genet, 2016, 12(5): e1006026. doi: 10.1371/journal.pgen.1006026.

- [58] HAN W X, HAN D L, HE Z P, et al. The SWI/SNF subunit SWI3B regulates IAMT1 expression via chromatin remodeling in Arabidopsis leaf development [J]. Plant Sci, 2018, 271: 127–132. doi: 10.1016/j. plantsci.2018.03.021.
- [59] SARNOWSKA E A, ROLICKA A T, BUCIOR E, et al. DELLA-interacting SWI3C core subunit of switch/sucrose nonfermenting chromatin remodeling complex modulates gibberellin responses and hormonal cross talk in *Arabidopsis* [J]. Plant Physiol, 2013, 163(1): 305–317. doi: 10.1104/pp.113.223933
- [60] TANG X R, HOU A F, BABU M, et al. The Arabidopsis BRAHMA chromatin-remodeling ATPase is involved in repression of seed maturation genes in leaves [J]. Plant Physiol, 2008, 147(3): 1143–1157. doi: 10.1104/pp.108.121996.
- [61] BRZESKI J, PODSTOLSKI W, OLCZAK K, et al. Identification and analysis of the *Arabidopsis thaliana BSH* gene, a member of the *SNF5* gene family [J]. Nucl Acids Res, 1999, 27(11): 2393–2399. doi: 10. 1093/nar/27.11.2393.
- [62] SACHAROWSKI S P, GRATKOWSKA D M, SARNOWSKA E A, et al. SWP73 subunits of *Arabidopsis* SWI/SNF chromatin remodeling complexes play distinct roles in leaf and flower development [J]. Plant Cell, 2015, 27(7): 1889–1906. doi: 10.1105/tpc.15.00233.
- [63] JÉGU T, DOMENICHINI S, BLEIN T, et al. A swi/snf chromatin remodelling protein controls cytokinin production through the regulation of chromatin architecture [J]. PLoS One, 2015, 10(10): e0138276. doi: 10.1371/journal.pone.0138276.
- [64] JÉGU T, LATRASSE D, DELARUE M, et al. The BAF60 subunit of the swi/snf chromatin-remodeling complex directly controls the formation of a gene loop at *flowering locus C* in *Arabidopsis* [J]. Plant Cell, 2014, 26(2): 538–551. doi: 10.1105/tpc.113.114454.
- [65] JÉGU T, VELUCHAMY A, RAMIREZ-PRADO J S, et al. The Arabidopsis SWI/SNF protein BAF60 mediates seedling growth control by modulating DNA accessibility [J]. Genome Biol, 2017, 18: 114. doi: 10.1186/s13059-017-1246-7.
- [66] CAMPI M, D'ANDREA L, EMILIANI J, et al. Participation of chromatinremodeling proteins in the repair of ultraviolet-b-damaged DNA [J]. Plant Physiol, 2012, 158(2): 981–995. doi: 10.1104/pp.111.191452.
- [67] KANDASAMY M K, DEAL R B, MCKINNEY E C, et al. Silencing the nuclear actin-related protein AtARP4 in *Arabidopsis* has multiple effects on plant development, including early flowering and delayed floral senescence [J]. Plant J, 2005, 41(6): 845–858. doi: 10.1111/j. 1365-313x.2005.02345.x.

- [68] KANDASAMY M K, MCKINNEY E C, DEAL R B, et al. Arabidopsis ARP7 is an essential actin-related protein required for normal embryogenesis, plant architecture, and floral organ abscission [J]. Plant Physiol, 2005, 138(4): 2019–2032. doi: 10.1104/pp.105.065326.
- [69] FRITSCH O, BENVENUTO G, BOWLER C, et al. The INO80 protein controls homologous recombination in *Arabidopsis thaliana* [J]. Mol Cell, 2004, 16(3): 479–485. doi: 10.1016/j.molcel.2004.09.034.
- [70] ZHANG C, CAO L, RONG L, et al. The chromatin-remodeling factor AtINO80 plays crucial roles in genome stability maintenance and in plant development [J]. Plant J, 2015, 82(4): 655–668. doi: 10.1111/ tpj.12840.
- [71] HAN Y F, DOU K, MA Z Y, et al. SUVR2 is involved in transcriptional gene silencing by associating with SNF2-related chromatinremodeling proteins in *Arabidopsis* [J]. Cell Res, 2014, 24(12): 1445– 1465. doi: 10.1038/cr.2014.156.
- [72] DOKLÁDAL L, BENKOVÁ E, HONYS D, et al. An armadillodomain protein participates in a telomerase interaction network [J]. Plant Mol Biol, 2018, 97(4/5): 407–420. doi: 10.1007/s11103-018-0747-4.
- [73] CHOI K, PARK C, LEE J, et al. Arabidopsis homologs of components of the SWR1 complex regulate flowering and plant development [J]. Development, 2007, 134(10): 1931–1941. doi: 10.1242/dev.001891.
- [74] MARCH-D ÍAZ R, GARCIA-DOM ÍNGUEZ M, FLORENCIO F J, et al. SEF, a new protein required for flowering repression in *Arabidopsis*, interacts with PIE1 and ARP6 [J]. Plant Physiol, 2007, 143(2): 893– 901. doi: 10.1104/pp.106.092270.
- [75] GÓMEZ-ZAMBRANO Á, CREVILLÉN P, FRANCO-ZORRILLA J M, et al. *Arabidopsis* SWC4 binds DNA and recruits the SWR1 complex to modulate histone H2A.Z deposition at key regulatory genes [J]. Mol Plant, 2018, 11(6): 815–832. doi: 10.1016/j.molp.2018.03.014.
- [76] BERRIRI S, GANGAPPA S N, KUMAR S V. SWR1 chromatinremodeling complex subunits and H2A.Z have non-overlapping functions in immunity and gene regulation in *Arabidopsis* [J]. Mol Plant, 2016, 9(7): 1051–1065. doi: 10.1016/j.molp.2016.04.003.
- [77] CHOI K, KIM J, MULLER S Y, et al. Regulation of microRNAmediated developmental changes by the SWR1 chromatin remodeling complex [J]. Plant Physiol, 2016, 171(2): 1128–1143. doi: 10.1104/pp. 16.00332.
- [78] CUI Z B, TONG A Z, HUO Y Q, et al. SKIP controls flowering time via the alternative splicing of SEF pre-mRNA in Arabidopsis [J]. BMC Biol, 2017, 15: 80. doi: 10.1186/s12915-017-0422-2.
- [79] QIN Y, ZHAO L H, SKAGGS M I, et al. Actin-related protein6 regulates female meiosis by modulating meiotic gene expression in

- [80] ZHAO L H, CAI H Y, SU Z X, et al. *KLU* suppresses megasporocyte cell fate through SWR1-mediated activation of *WRKY28* expression in *Arabidopsis* [J]. Proc Natl Acad Sci USA, 2018, 115(3): E526-E535. doi: 10.1073/pnas.1716054115..
- [81] ZACHARAKI V, BENHAMED M, POULIOS S, et al. The Arabidopsis ortholog of the YEATS domain containing protein YAF9a regulates flowering by controlling H4 acetylation levels at the *FLC* locus [J]. Plant Sci, 2012, 196: 44–52. doi: 10.1016/j.plantsci.2012.07.010.
- [82] CREVILLÉN P, GÓMEZ-ZAMBRANO Á, LÓPEZ J A, et al. *Arabidopsis* YAF9 histone readers modulate flowering time through nuA4complex-dependent H4 and H2A.Z histone acetylation at *FLC* chromatin [J]. New Phytol, 2019, 222(4): 1893–1908. doi: 10.1111/nph.15737.
- [83] SHEN Y, DEVIC M, LEPINIEC L, et al. Chromodomain, helicase and DNA-binding CHD1 protein, CHR5, are involved in establishing active chromatin state of seed maturation genes [J]. Plant Biotechnol J, 2015, 13(6): 811–820. doi: 10.1111/pbi.12315.
- [84] ZOU B H, SUN Q, ZHANG W L, et al. The Arabidopsis chromatinremodeling factor CHR5 regulates plant immune responses and nucleosome occupancy [J]. Plant Cell Physiol, 2017, 58(12): 2202– 2216. doi: 10.1093/pcp/pcx155.
- [85] AICHINGER E, VILLAR C B R, DI MAMBRO R, et al. The CHD3 chromatin remodeler PICKLE and polycomb group proteins antagonistically regulate meristem activity in the *Arabidopsis* root [J]. Plant Cell, 2011, 23(3): 1047–1060. doi: 10.1105/tpc.111.083352.
- [86] FUKAKI H, TANIGUCHI N, TASAKA M. PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during *Arabidopsis* lateral root initiation [J]. Plant J, 2006, 48(3): 380–389. doi: 10.1111/j.1365-313x.2006.02882.x.
- [87] ZHANG H, BISHOP B, RINGENBERG W, et al. The CHD3 remodeler PICKLE associates with genes enriched for trimethylation of histone H3 lysine 27 [J]. Plant Physiol, 2012, 159(1): 418–432. doi: 10.1104/pp.112.194878.
- [88] YANG R, ZHENG Z M, CHEN Q, et al. The developmental regulator PKL is required to maintain correct DNA methylation patterns at RNAdirected DNA methylation loci [J]. Genome Biol, 2017, 18(1): 103. doi: 10.1186/s13059-017-1226-y.
- [89] PARK J, OH D H, DASSANAYAKE M, et al. Gibberellin signaling requires chromatin remodeler PICKLE to promote vegetative growth and phase transitions [J]. Plant Physiol, 2017, 173(2): 1463–1474. doi: 10.1104/pp.16.01471.
- [90] XU M L, HU T Q, SMITH M R, et al. Epigenetic regulation of

vegetative phase change in Arabidopsis [J]. Plant Cell, 2016, 28(1): 28–41. doi: 10.1105/tpc.15.00854.

- [91] JING Y J, ZHANG D, WANG X, et al. Arabidopsis chromatin remodeling factor PICKLE interacts with transcription factor HY5 to regulate hypocotyl cell elongation [J]. Plant Cell, 2013, 25(1): 242–256. doi: 10.1105/tpc.112.105742.
- [92] SMACZNIAK C, IMMINK R G H, MUIÑO J M, et al. Characterization of MADS-domain transcription factor complexes in *Arabidopsis* flower development [J]. Proc Natl Acad Sci USA, 2012, 109(5): 1560–1565. doi: 10.1073/pnas.1112871109.
- [93] ZHANG D, JING Y J, JIANG Z M, et al. The chromatin-remodeling factor PICKLE integrates brassinosteroid and gibberellin signaling during skotomorphogenic growth in *Arabidopsis* [J]. Plant Cell, 2014, 26(6): 2472–2485. doi: 10.1105/tpc.113.121848.
- [94] ZEMACH A, LI Y, WAYBURN B, et al. DDM1 binds Arabidopsis methyl-CpG binding domain proteins and affects their subnuclear localization [J]. Plant Cell, 2005, 17(5): 1549–1558. doi: 10.1105/tpc. 105.031567
- [95] ZEMACH A, KIM M Y, HSIEH P H, et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access h1containing heterochromatin [J]. Cell, 2013, 153(1): 193–205. doi: 10. 1016/j.cell.2013.02.033.
- [96] LYONS D B, ZILBERMAN D. DDM1 and lsh remodelers allow methylation of DNA wrapped in nucleosomes [J]. Elife, 2017, 6: e30 674. doi: 10.7554/eLife.30674.
- [97] XIE X Y, SHIPPEN D E. DDM1 guards against telomere truncation in *Arabidopsis* [J]. Plant Cell Rep, 2018, 37(3): 501–513. doi: 10.1007/ s00299-017-2245-6.
- [98] CHO E J, CHOI S H, KIM J H, et al. A mutation in plant-specific swi2/snf2-like chromatin-remodeling proteins, DRD1 and DDM1, delays leaf senescence in *Arabidopsis thaliana* [J]. PLoS One, 2016, 11(1): e0146826. doi: 10.1371/journal.pone.0146826.
- [99] LI G, LIU S J, WANG J W, et al. ISWI proteins participate in the genome-wide nucleosome distribution in *Arabidopsis* [J]. Plant J, 2014, 78(4): 706–714. doi: 10.1111/tpj.12499.
- [100] LI G, ZHANG J W, LI J Q, et al. Imitation switch chromatin remodeling factors and their interacting RINGLET proteins act together in controlling the plant vegetative phase in *Arabidopsis* [J]. Plant J, 2012, 72(2): 261–270. doi: 10.1111/j.1365-313X.2012.05074.x.
- [101] LAW J A, AUSIN I, JOHNSON L M, et al. A protein complex required for polymerase V transcripts and RNA-directed DNA methylation in *Arabidopsis* [J]. Curr Biol, 2010, 20(10): 951–956. doi: 10. 1016/j.cub.2010.03.062.

- [102] HIRAKAWA T, HASEGAWA J, WHITE C I, et al. RAD54 forms DNA repair foci in response to DNA damage in living plant cells [J]. Plant J, 2017, 90(2): 372–382. doi: 10.1111/tpj.13499.
- [103] ARCHACKI R, BUSZEWICZ D, SARNOWSKI T J, et al. BRAHMA ATPase of the SWI/SNF chromatin remodeling complex acts as a positive regulator of gibberellin-mediated responses in *Arabidopsis* [J]. PLoS One, 2013, 8(3): e58588. doi: 10.1371/journal.pone.0058588.
- [104] FARRONA S, HURTADO L, MARCH-D ÍAZ R, et al. Brahma is required for proper expression of the floral repressor *FLC* in *Arabidopsis* [J]. PLoS One, 2011, 6(3): e17997. doi: 10.1371/journal.pone. 0017997.
- [105] LI C L, CHEN C, GAO L, et al. The *Arabidopsis* swi2/snf2 chromatin remodeler BRAHMA regulates polycomb function during vegetative development and directly activates the flowering repressor gene *svp* [J]. PLoS Genet, 2015, 11(1): e1004944. doi: 10.1371/journal.pgen. 1004944.
- [106] WALLEY J W, ROWE H C, XIAO Y M, et al. The chromatin remodeler SPLAYED regulates specific stress signaling pathways [J]. PLoS Pathog, 2008, 4(12): e1000237. doi: 10.1371/journal.ppat.1000237.
- [107] JOHNSON K C M, XIA S T, FENG X Q, et al. The chromatin remodeler SPLAYED negatively regulates SNC1-mediated immunity [J]. Plant Cell Physiol, 2015, 56(8): 1616–1623. doi: 10.1093/pcp/pcv087.
- [108] GENG F, CAO Y, LAURENT B C. Essential roles of snf5p in snf-swi chromatin remodeling *in vivo* [J]. Mol Cell Biol, 2001, 21(13): 4311– 4320. doi: 10.1128/MCB.21.13.4311-4320.2001.
- [109] MULLER J, OMA Y, VALLAR L, et al. Sequence and comparative genomic analysis of actin-related proteins [J]. Mol Biol Cell, 2005, 16(12): 5736–5748. doi: 10.1091/mbc.e05-06-0508.

- [110] KANDASAMY M K, DEAL R B, MCKINNEY E C, et al. Plant actin-related proteins [J]. Trends Plant Sci, 2004, 9(4): 196–202. doi: 10.1016/j.tplants.2004.02.004.
- [111] KANDASAMY M K, MCKINNEY E C, MEAGHER R B. Cell cycle-dependent association of *Arabidopsis* actin-related proteins AtARP4 and AtARP7 with the nucleus [J]. Plant J, 2003, 33(5): 939– 948. doi: 10.1046/j.1365-313x.2003.01691.x.
- [112] LI H C, CHUANG K, HENDERSON J T, et al. PICKLE acts during germination to repress expression of embryonic traits [J]. Plant J, 2005, 44(6): 1010–1022. doi: 10.1111/j.1365-313x.2005.02602.x.
- [113] AICHINGER E, VILLAR C B R, FARRONR S, et al. CHD3 proteins and polycomb group proteins antagonistically determine cell identity in *Arabidopsis* [J]. PLoS Genet, 2009, 5(8): e1000605. doi: 10.1371/ journal.pgen.1000605.
- [114] CARTER B, HENDERSON J T, SVEDIN E, et al. Cross-Talk between sporophyte and gametophyte generations is promoted by CHD3 chromatin remodelers in *Arabidopsis thaliana* [J]. Genetics, 2016, 203(2): 817–829. doi: 10.1534/genetics.115.180141
- [115] HIGO H, TAHIR M, TAKASHIMA K, et al. DDM1 (decrease in DNA methylation) genes in rice (*Oryza sativa*) [J]. Mol Genet Genom, 2012, 287(10): 785–792. doi: 10.1007/s00438-012-0717-5.
- [116] MA X D, MA J, ZHAI H H, et al. CHR729 is a CHD3 protein that controls seedling development in rice [J]. PLoS One, 2015, 10(9): e0138934. doi: 10.1371/journal.pone.0138934.
- [117] FOLTA A, BARGSTEN J W, BISSELING T, et al. Compact tomato seedlings and plants upon overexpression of a tomato chromatin remodelling ATPase gene [J]. Plant Biotechnol J, 2016, 14(2): 581– 591. doi: 10.1111/pbi.12400.