向日葵MADS-Box基因HAM23-like克隆和表达分析

苏周,吴雨,雷豆,韦小英,何卓远,杨军,邹建*

(西华师范大学西南野生动植物资源保护省部共建(教育部)重点实验室, 四川 南充 637009)

摘要:为了解 MADS-box 基因在向日葵(*Helianthus annuus*)花发育过程中的作用,采用 RT-PCR 技术克隆了 1 个 MADS-box 基因新成员 *HAM23-like*,开放阅读框为 831 bp,编码 276 个氨基酸,相对分子量为 30.52 kD,理论等电点为 9.42。系统发育分析表明,HAM23-like 与拟南芥的 AGL18 聚于同一分支,具有较近的亲缘关系。qRT-PCR 分析表明,*HAM23-like* 基因 在花和成熟果实(籽粒饱满期)中的表达量较高;*HAM23-like*在开花当天的雄蕊中的表达量最高;随着花的发育,*HAM 23-like* 表达量逐渐升高,在开花后 5 d (果实形成早期)达到最高表达水平。因此,推断 *HAM23-like* 基因可能与向日葵花器官后期发育和瘦果早期发育相关。

关键词:向日葵; MADS-box 家族; HAM23-like 基因; 花发育 doi: 10.11926/jtsb.4017

Cloning and Expression Analysis of MADS-box Gene HAM23-like in Helianthus annuus

SU Zhou, WU Yu, LEI Dou, WEI Xiao-ying, HE Zhuo-yuan, YANG Jun, ZOU Jian*

[Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China]

Abstract: MADS-box family proteins are important transcription factors associated with the regulation of growth and development, especially in floral development of higher plants. *HAM23-like*, a new member of the MADS-box genes, was cloned from *Helianthus annuus*. The bioinformatic results revealed that *HAM23-like* gene had an open reading frame of 831 bp, encoding a protein with 276 amino acid; the protein possessed a relative molecular weight of 30.52 kD and a theoretical isoelectric point of 9.42. The analysis of phylogenetic tree showed that *HAM23-like* was closely homologous to the *AGL18* gene of *Arabidopsis thaliana*. Moreover, the qRT-PCR results indicated that the *HAM 23-like* gene were highly expressed in flower and mature fruit in tissue expression pattern, and in different floral organ of flowering day, the expression of *HAM23-like* reached the highest level in stamen. In addition, the expression of the *HAM23-like* gene was gradually raised during the floral development, and reached the highest expression on 5 days after flower blooming. These results implied that *HAM23-like* gene would be involved in the later stage of floral organs development and the earlier stage of achene development in *H. annuus*. The results of this study could provide some preliminary data and theoretical basis for further study, especially, it will help to explore the regulatory role of *HAM23-like* in floral development and achene formation in *H. annuus*.

Key words: Helianthus annuus; MADS-box family; HAM23-like gene; Floral development

收稿日期: 2018–11–03 **接受日期:** 2019–03–04

基金项目:国家自然科学基金项目(31171587);四川省教育部创新团队项目(16TD0020)资助

This work was supported by the National Natural Foundation of China (Grant No. 31771587), and the Innovation Team Program of Sichuan Education Department (Grant No. 16TD0020).

作者简介:苏周(1995~),女,在读研究生,主要从事植物遗传研究。E-mail: 472290067@qq.com

* 通信作者 Corresponding author. E-mail: zoujian@cwnu.edu.cn

花器官发育是陆生植物在生殖进程中的重要 过程,该过程对于开花植物的有性生殖具有极其重 要的意义。在进化过程中,由于自然选择的作用和 花器官的起源不同,不同开花植物之间形态上存在 多样性^[1-3]。典型的双子叶植物的花从外到内由4 轮不同的花器官组成,第1轮是萼片,第2轮是花 瓣,第3轮是雄蕊,第4轮是心皮^[4]。经典的ABC 模型将假定参与花发育的基因分为ABC3类。其中, A 类基因控制萼片和花瓣,该类基因功能缺失将导 致萼片和花瓣变成心皮和雄蕊; B 类基因控制花瓣 和雄蕊,该类基因失活花瓣和雄蕊将变成萼片和心 皮; C 类基因控制雄蕊和心皮,该类基因的缺失将 引起雄蕊和心皮变成花瓣和萼片^[4]。现有的研究显 示,ABC 模型中参与花器官发育调控基因中大多数 都属于 MADS-box 基因家族^[5]。

MADS-box 基因家族在动物、植物和真菌中广泛 存在,其在植物生长发育的各阶段发挥着重要的调节 作用[6-7]。MADS 是 MCM1、AGAMOUS、DEFICIENS 和 SRFS 的首字母缩写组成。其中 MCM1 (minichromosome maintenance1)的功能是调节细胞周期、生 长、代谢、专一性和决定细胞类型^[8]; AGAMOUS (AG) 和 DEFICIENS (DEF)均是花器官基因的编码蛋白, 分别来自拟南芥(Arabidopsis thaliana)和金鱼草 (Antirrhinum majus); SRF (serum response factor)为 人类血清应答因子[9-11]。这些基因均具有一个由 56~58个氨基酸组成的高度保守结构域,称为 MADSbox 结构域,故将其命名为 MADS-box 基因^[12-13]。 MADS-box 基因不仅参与调控开花时间,决定花分 生组织的发生和花器官特征,而且在根、叶、胚珠 和果实的发育过程中也起着重要作用^[6-13]。Koo等 的研究结果显示,过表达 AGL6 基因会造成拟南芥 提前开花^[14];此外番茄中的研究证明了 MADS-box 家族成员 rin 基因参与果实成熟的调控, 而 SIMBP21 基因则控制番茄萼片的大小[15-16]。

向日葵(Helianthus annuus)是典型的菊科(Compositae)植物,头状花序由外轮不育的舌状花(缺乏雄蕊和雌蕊)和内部可育的管状花组成。迄今为止,在形态学方面对菊科植物花形态和发育进行了大量研究,但从分子遗传学的角度来看,这一种类极多的被子植物科的花序和花的发育仍不清楚,而 MADS-box 基因在影响花形成的所有阶段都发挥着重要的作用^[17]。到目前为止,关于向日葵的 MADS-box 基因研究较少,在控制花序形态发生方面,仅 有9个向日葵 MADS-box 基因被分离和报道,包括 2个A类基因 HAM 75 和 HAM 92,影响花瓣和种 皮的形成; 4个 B 类基因 HAM31、HAM2、HAM63 和 HAM91;2个C 类基因 HAM45 和 HAM59, HAM59 参与花分生组织的终止,并与 HAM45 共同确定雄 蕊和雌蕊; 1个 E 类基因 HAM137^[17-18]。研究向日 葵的 MADS-box 基因,能深入了解 MADS-box 基 因对向日葵营养生长和生殖生长的影响。目前对 向日葵的 MADS-box transcription factor 23-like 基因 尚未见研究报道。本文从向日葵花中克隆了1个与 花发育相关含有 MADS-box 结构域的基因,通过 NCBI 对其进行序列比对,确定为向日葵 MADS-box transcription factor 23-like (HAM23-like), 利用在线 生物软件对其编码蛋白进行理化性质和生物信息 学分析,随后采用实时荧光定量 PCR (qRT-PCR)对 该基因的表达模式进行分析,为探究 HAM23-like 基因的功能及 MADS-box 基因对向日葵花发育的 调控作用奠定基础。

1 材料和方法

1.1 材料

试验材料是向日葵光雾山野生葵品种(*Helianthus annuus* 'GW Mountain Wild'),种于温室(光/暗=16 h/8 h, 28℃/24℃)中。分别采集根、茎、叶、花、果 实(MSt, 籽粒饱满阶段)后用液氮速冻,置于-80℃ 冰箱保存。

E.Z.N.A[®]Plant RNA Kit 购于 OMEGA; 荧光定 量染料试剂 SYBR[®] Premix ExTaqTM II、反转录试 剂盒 PrimeScriptTM RT Reagent Kit With gDNA Eraser (Perfect Real Time)等购自宝生物(TaKaRa)公 司; *FastPfu* Fly DNA 聚合酶、克隆载体 *pEASY*[®]-Blunt Cloning Kit、大肠杆菌 DH5α 购于北京全式 金。其余化学试剂均为国产分析纯级。

1.2 总 RNA 提取和合成 cDNA

在开花前 35(-35)、-25、-15、-10、-5、0d(开 花当天)、开花后 5d(未成熟果实)采集花;并在向 日葵开花当天分别采集根、茎、叶、果实(籽粒饱满 阶段)及6种花器官:苞片、雌蕊、冠毛、花瓣、雄 蕊、子房。材料采集后,按照 E.Z.N.A[®]Plant RNA Kit 试剂盒说明书提取各组织的总 RNA,然后用琼脂糖 凝胶电泳和 NANODROP 2000c 检测提取 RNA 的浓 度和纯度。以所得 RNA 为模板参照 TaKaRa 反转录 试剂盒说明书进行反转录,合成 cDNA。

1.3 基因克隆

根据向日葵全发育时期表达谱库 454 和向日葵 花发育时期转录组数据库(均未上传 NCBI)筛选到 的基因序列,并在 NCBI (https://www.ncbi.nlm.nih. gov/)中比对获得目的基因登录号(XM_02213319 8.1), 根据基因序列设计特异性引物 transcription factor 23-F/R, 以反转录第一链 cDNA 为模板, 扩增 transcription factor 23 基因全长序列。PCR 扩增体系 共 50 µL, 包含 cDNA 模板 3 µL, transcription factor 23-F/R 引物各 1 μ L, 5×buffer 10 μ L, dNTP 4 μ L, ddH₂O 30 µL 和 FastPfu Fly DNA 聚合酶 1 µL, 均加 入 200 µL 离心管中, 用枪尖冲打混匀。扩增程序为 98℃ 30 s, 56℃ 30 s, 72℃ 1.5 min, 34 次循环, 72℃ 延伸5min。扩增产物经1%的琼脂糖凝胶电泳检测, 切胶回收, 连接到 pEASY®-Blunt vector 克隆载体, 并转入大肠杆菌(Escherichia coli) DH5α 感受态细 胞中,在含100 mg L⁻¹ Kan 的 LB 培养基中 37℃恒 温培养过夜,筛选出阳性转化细胞,送至上海生物 工程公司测序。

1.4 系统发育树的构建

利用 NCBI 中在线软件 ORF Finder 对所有拟南 芥和向日葵 MADS-box 基因序列进行分析, 推导出 编码的氨基酸序列。拟南芥 MADS-box 基因由拟南 芥数据库获得利用 MEGA 6.0 软件构建拟南芥 (https://www.arabidopsis.org/)和向日葵 MADS-box 的系统发育树, 预测向日葵 HAM23-like 基因与拟 南芥的亲缘关系。

1.5 HAM23-like 的生物信息学分析

利用在线软件 ProtScale (http://web.expasy.org/ protscale)和 ExPASy (http://web.expasy.org/protparam/) 分别对 *HAM23-like* 基因编码蛋白的亲/疏水性和 理化性质进行预测。

使用 DNAMAN 8.0 软件对 HAM23-like、拟南 芥 Agamous-like 18 的氨基酸序列和朝鲜蓟(Cynara cardunculus var. scolymus)、莴苣(Lactuca sativa)和 番茄(Lycopersicon esculentum)等高等植物的 MADSbox transcription factor 23-like 基因编码的氨基酸序 列进行同源比对。

1.6 HAM23-like 的表达模式

采用实时荧光定量法检测,利用 Primer primer 5.0 设计 *HAM23-like* 基因的实时荧光定量引物,以向 日葵 *eF1A* 为内参基因(表 1)。以提取的向日葵 cDNA 为模板进行 qRT-PCR 扩增,扩增体系为: SYBR[®] Premix ExTaqTM II 5 μ L, Transcripition factor 23-F/R 各 1 μ L, ddH₂O 2 μ L, 模板 cDNA 1 μ L。PCR 反应 在 CFX96 Real-Time PCR 仪(Bio-Rad,美国)上完成, 3 次重复。先确定最适解链温度(melting temperature, Tm),再构建标准曲线,最后进行检测。

表1 引物序列

Table 1	Primer sequence

引物 Primer	序列 Sequence (5'~3')
HAM 23-like	AATGCCCACTAAGGTTTCCATC
HAM 23-like	CTTGGCTTCAAAACTTATGGATCA
qHAM 23-like-F	CATGTGCGGTTCTTCTTCGT
qHAM 23-like-R	CCATCGTCTTCCTCCTCCTC
eF1A-F	AGCCCAAGAGACCCTCAGACAAG
eF1A-R	CCCTGATGGTCCGAAGGTAACAAC

2 结果和分析

2.1 HAM23-like 的克隆

以向日葵总 RNA 反转录所得 cDNA 为模板, 用 HAM23-like F/R 引物进行 PCR 扩增,得到与预 测大小一致的条带(图 1)。为了验证克隆准确性,挑 选 10 个单克隆菌落进行测序,测序片段为 956 bp, 包含了 HAM23-like 基因完整的开放阅读框(ORF)。

2.2 HAM23-like 的生物信息学分析

从 NCBI 中 BLAST 比对找到 HAM23-like 基因 的序列,再通过 NCBI 的 CD Search 搜索 HAM23-like 基因编码蛋白的保守结构域,结果表明 HAM23-like 的 ORF 为 831 bp (图 2),编码 276 个氨基酸。该基 因编码的蛋白具有保守的 MADS-box 和 K-box 结构 域,分别位于氨基酸序列的第46~119 和 128~211 位 (图 3)。利用在线分析网站 ExPASy 对 HAM23-like 蛋白进行组分分析,相对分子质量为 30.52 kD,理 论等电点为 9.42,属于不稳定蛋白,不稳定指数为 55.03;脂溶性指数为 76.03;亲水性平均值(GRAVY) 为-0.683。蛋白中包括正电荷氨基酸残基(Arg+Lys) 46 个,负电荷氨基酸残基(Asp+Glu) 35 个,分别占 总氨基酸数的 16.7%和 12.7%。疏水性最强和亲水 性最强的氨基酸分别是位于第 91 位的 Ile (1.944)和

图 1 HAM23-like 的扩增。M: DL2000 DNA Marker。 Fig. 1 PCR of HAM23-like. MDL2000 DNA Marker.

264 位的 His (-3.778) (图 4)。

将推测的向日葵 HAM23-like 基因与其他植物 MADS-box 基因编码的氨基酸序列进行同源比对, 结果表明 HAM23-like 具有典型 MADS-box 保守结 构域,即 MIKC 结构域。随后构建了基于 MADS-box 基因编码氨基酸序列的拟南芥和向日葵系统发育 树(图 5),包括 9 个已报道的向日葵 MADS-box 氨 基酸序列和本研究挑选出的 8 个疑似与花发育相关的 MADS-box 氨基酸序列。结果表明, HAM23-like 蛋白与拟南芥的 AGL18 蛋白聚在同一分支上,说明两者有较高的亲缘关系。

将 HAM23-like 基因与拟南芥 Agamous-like 18、 朝鲜蓟、莴苣和番茄的 MADS-box transcription factor 23-like 基因等编码的氨基酸序列进行同源比 对,结果表明(图 6), HAM23-like 在第 46~119 位有 典型的 MADS-box 保守结构域, 拟南芥 AGL18 蛋 白和朝鲜蓟、莴苣及番茄的 MADS-box transcription factor 23-like 蛋白的保守结构域分别位于第 2~75、 2~74、43~115 和 2~77 位,说明 MADS-box 蛋白 的保守结构域具有高度相似性。同时,HAM23-like 与朝鲜蓟的 MADS-box transcription factor 23-like 相似度最高,达到 81%;可能向日葵与拟南芥属 于不同科,存在一定的差异,与拟南芥的 AGL18 的 相似度不高。

2.3 HAM23-like 的表达分析

组织表达模式分析结果表明(图 7), HAM23-like 基因在向日葵的根、茎、叶、花和果实中均有表达,

图 2 HAM23-like 基因序列和编码的氨基酸序列

Fig. 2 Sequence of HAM23-like and encoded amino acid sequence

图 3 HAM23-like 蛋白的保守结构域

Fig. 3 Conversed domain of HAM23-like protein

图 4 HAM23-like 蛋白的亲、疏水性预测

Fig. 4 Prediction of hydrophobicity and hydrophilicity of HAM23-like protein

图 5 拟南芥和向日葵 MADS-box 蛋白的系统发育树。A: 拟南芥; c: 向日葵。

Fig. 5 Phylogenetic tree of MADS-box proteins in Arabidopsis and Helianthus. A: Arabidopsis thaliana; c: Helianthus annuus.

图 6 向日葵 HAM23-like 的氨基酸序列与其他植物的同源性比较

Fig. 6 Homology comparison of Helianthus annuus HAM23-like protein with other plants

图 7 HAM23-like 在不同组织中的表达

Fig. 7 Expression of HAM23-like in different tissues

在花的表达量最高,其次是果实,茎中的表达量最低。HAM23-like 基因在花中的最高表达量达到了茎中表达量的 24 倍。这说明 HAM23-like 可能在花发育和果实的形成过程中起重要的作用。

对花发育 6 个时期(-35 至 0 d)和果实发育早期(5 d, 未成熟果实)及开花当天的 6 个花器官中 HAM23-like 基因的表达量进行分析,结果表明(图 8),花发育的整个过程中, HAM23-like 基因的表达 量逐渐升高,尤其在开放前 5 d (-5 d)表达量激增, 并在完全开放时达花期最高值,在果实发育早期 HAM23-like 基因表达达到整个生命周期的峰值,这 表明 HAM23-like 可能在向日葵开花过程和果实发 育早期发挥重要的调控作用。同时,在开花当天, HAM 23-like 在雄蕊和子房有表达,且雄蕊中的表 达量极高,这说明 HAM 23-like 可能对雄蕊和花粉 的形成起重要的调控作用,也对果实早期的形成有 着一定的影响。

3 讨论

高等植物生活周期史中,生殖发育或花发育是 极其重要的一个环节,受到遗传因素和外界环境的 双重影响,是开花基因在时间和空间顺序上的表达 与外部环境的影响共同作用的结果^[19-20]。植物花发 育进程涉及到光周期、春化、自主和赤霉素等信号 途径^[21]。此外,MADS-box 家族转录因子的调控作 用也是该进程不可或缺的因素^[22]。然而,MADS-box 家族对植物生长的调控作用体现在多个方面,不 仅参与花分生组织的发生和花器官形态建成的调 节^[23],还与控制开花时间^[24-31]、调节侧根生长^[32]、 果实、胚珠和种皮的形成有关^[33-37]。

本研究从向日葵中克隆了1个MADS-box基因 HAM 23-like,对其编码的蛋白质进行了生物信息学 分析,同源对比结果表明 HAM 23-like 具有典型的 MADS-box保守结构域。系统发育分析表明 HAM 23like 与拟南芥的 AGL18 亲缘关系最近。有研究表明; AGL18 参与拟南芥花器官发育和角果发育的调控;

过表达 AGL18 会延长生长周期和花器官的衰老和 脱落,抑制开花^[23]。因此,我们推测向日葵 HAM23like 基因作为AGL18 的同源基因也可能参与花发育 进程调控。AGL18 基因在拟南芥营养生长期几乎所 有部位有表达,仅新生叶片和下胚轴中没有表达; 在生殖生长期从未成熟的花蕾到花粉和种皮均可 表达,且其在根、花和角果中的表达量较高^[23]。 本研究结果表明,HAM23-like 基因在向日葵的根、 茎、叶、花和瘦果中均有表达,以花和瘦果的表达 较高,这与AGL18 基因在拟南芥的表达模式较为相 似。这进一步说明 HAM23-like 基因为 AGL18 的同 源基因,也暗示 HAM23-like 基因可能具有与AGL18 基因相似的功能,参与调控向日葵花的形成和开 放,而调控方式和调控部位是否相同还有待于进一 步研究。

目前,拟南芥和水稻中分别报道了 MADS-box 基因 107 和 75 个^[38-43],而有关向日葵的 MADS-box 基因报道却很少。HAM75 和 HAM92 对花瓣和种皮 的形成有影响^[17], HAM59 和 HAM45 共同确定雄蕊 和雌蕊的形成^[18]。但还未见能同时影响雄蕊和果实 形成的 MADS-box 基因。HAM 23-like 在花发育过 程各阶段均有表达,以开花前 5 d、开花当天和开 花后 5 d 的表达量相对较高,且 HAM 23-like 仅在 雄蕊和子房中表达,雄蕊的表达量远高于子房。在 拟南芥中 AGL18 基因未成熟的花蕾、花粉,角果和 种皮均具有较高的表达水平^[23]。说明向日葵 HAM23like 基因也具有拟南芥 AGL18 基因相似的生物学功 能,主要与花发育后期的花器官和花粉发育以及瘦 果和种皮早期发育有紧密联系。然而该基因是否在 花开放和果实形成过程中起到决定作用还不清楚,

而且 HAM23-like 基因是否和 AGL18 基因一样对向日葵花器官发育发挥负调控作用也需要进一步的验证^[23,44]。

本研究对 HAM23-like 基因及其编码蛋白的理 化性质、结构和功能的预测和分析,以及对该基因 在向日葵组织表达的特性进行定量分析,为探究 HAM23-like 基因在向日葵花发育过程的调控作用 提供科学依据。

参考文献

 LIU J W, SUN C H, LIU N. The ABC model and the quartet model of floral organ identity [J]. Chin Bull Bot, 2004, 21(3): 346–351. doi: 10. 3969/j.issn.1674-3466.2004.03.014.
 刘建武,孙成华,刘宁. 花器官决定的 ABC 模型和四因子模型 [J].

植物学通报, 2004, 21(3): 346-351. doi: 10.3969/j.issn.1674-3466. 2004.03.014.

- [2] WANG B, WU X J, XIE Z H, et al. Study on the ABC model for flower development [J]. Chin Agric Sci Bull, 2003, 19(5): 78-82,118.
 王彬, 吴先军, 谢兆辉, 等. 花器官发育的 ABC 模型研究进展 [J].
 中国农学通报, 2003, 19(5): 78-82,118.
- [3] LAWTON-RAUH A L, ALVAREZ-BUYLLA E R, PURUGGANAN
 M D. Molecular evolution of flower development [J]. Trends Ecol Evol, 2000, 15(4): 144–149. doi: 10.1016/S0169-5347(99)01816-9.
- [4] THEISSEN G. Development of floral organ identity: Stories from the MADS house [J]. Curr Opin Plant Biol, 2001, 4(1): 75–85. doi: 10. 1016/S1369-5266(00)00139-4.
- [5] THEISSEN G, BECKER A, DI ROSA A, et al. A short history of MADS-box genes in plants [J]. Plant Mol Biol, 2000, 42(1): 115–149. doi: 10.1023/A:1006332105728.
- [6] BECKER A, THEI & G. The major clades of MADS-box genes and

their role in the development and evolution of flowering plants [J]. Mol Phylogenet Evol, 2003, 29(3): 464–489. doi: 10.1016/S1055-7903(03) 00207-0.

- [7] KAUFMANN K, MELZER R, THEIßEN G MIKC-type MADSdomain proteins: Structural modularity, protein interactions and network evolution in land plants [J]. Gene, 2005, 347(2): 183–198. doi: 10.1016/j.gene.2004.12.014.
- [8] MESSENGUY F, DUBOIS E. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development [J]. Gene, 2003, 316: 1–21. doi: 10.1016/S0378-1119(03) 00747-9.
- [9] SOMMER H, BELTRÁN J P, HUIJSER P, et al. Deficiens, a homeotic gene involved in the control of flower morphogenesis in *Antirrhinum majus*: The protein shows homology to transcription factors [J]. EMBO J, 1990, 9(3): 605–613. doi: 10.1002/j.1460-2075.1990.tb08152.x.
- [10] YANOFSKY M F, MA H, BOWMAN J L, et al. The protein encoded by the *Arabidopsis* homeotic gene agamous resembles transcription factors [J]. Nature, 1990, 346(6279): 35–39. doi: 10.1038/346035a0.
- [11] NORMAN C, RUNSWICK M, POLLOCK R, et al. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the *c*-fos serum response element [J]. Cell, 1988, 55(6): 989– 1003. doi: 10.1016/0092-8674(88)90244-9.
- [12] de BODT S, RAES J, FLORQUIN K, et al. Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants [J]. J Mol Evol, 2003, 56(5): 573–586. doi: 10.1007/s00239-002-2426-x.
- [13] ALVAREZ-BUYLLA E R, LILJEGREN S J, PELAZ S, et al. MADSbox gene evolution beyond flowers: Expression in pollen, endosperm, guard cells, roots and trichomes [J]. Plant J, 2000, 24(4): 457–466. doi: 10.1111/j.1365-313X.2000.00891.x.
- [14] KOO S C, BRACKO O, PARK M S, et al. Control of lateral organ development and flowering time by the *Arabidopsis thaliana* MADSbox gene *AGAMOUS-LIKE6* [J]. Plant J, 2010, 62(5): 807–816. doi: 10.1111/j.1365-313X.2010.04192.x.
- [15] LI S, XU H L, JU Z, et al. The *RIN-MC* Fusion of MADS-box transcription factors has transcriptional activity and modulates expression of many ripening genes [J]. Plant Physiol, 2018, 176(1): 891–909. doi: 10.1104/pp.17.01449.
- [16] LI N, HUANG B W, TANG N, et al. The MADS-box gene *SlMBP21* regulates sepal size mediated by ethylene and auxin in tomato [J]. Plant Cell Physiol, 2017, 58(12): 2241–2256. doi: 10.1093/pcp/pcx158.
- [17] SHULGA O A, SHCHENNIKOVA A V, ANGENENT G C, et al. MADSbox genes controlling inflorescence morphogenesis in sunflower [J].

Ontogenez, 2008, 39(1): 4-7.

- [18] SHULGA O A, MITIOUCHKINA T Y, SHCHENNIKOVA A V, et al. Chrysanthemum modification via ectopic expression of sunflower MADS-box gene *HAM59* [J]. Acta Hort, 2015(1087): 105–111. doi: 10. 17660/ActaHortic.2015.1087.11.
- [19] LI Z W, ZHU Y. Research advance of plant flowering regulation mechnism [J]. Biol Teachn, 2011, 36(6): 6–7. doi: 10.3969/j.issn.1004– 7549.2011.06.003.

李朝炜,朱昀. 植物开花调控机理研究进展 [J]. 生物学教学, 2011, 36(6): 6-7. doi: 10.3969/j.issn.1004-7549.2011.06.003.

- [20] DAI C, PENG Z S, YANG Z J, et al. Cloning and expression analysis of glucosyltransferase gene *TaUGT73D1* in wheat [J]. Mol Plant Breed, 2017, 15(6): 2048–2057. doi: 10.13271/j.mpb.015.002048.
 代畅,彭正松,杨在君,等.小麦糖基转移酶基因 *TaUGT73D1* 的克隆及表达分析 [J]. 分子植物育种, 2017, 15(6): 2048–2057. doi: 10.13271/j.mpb.015.002048.
- [21] HE Y H, AMASINO R M. Role of chromatin modification in floweringtime control [J]. Trends Plant Sci, 2005, 10(1): 30–35. doi: 10.1016/j. tplants.2004.11.003.
- [22] LI Y Y, WANG L, SU Z G, et al. The molecular mechanism of MADS-box genes regulates floral formation and flowering in plant [J]. Genom Appl Biol, 2010, 29(6): 1122–1132. doi: 10.3969/gab.029.001122.
 李元元, 王鲁, 苏振刚, 等. MADS-box 基因控制植物成花的分子机 理 [J]. 基因组学与应用生物学, 2010, 29(6): 1122–1132. doi: 10.3969/gab.029.001122.
- [23] ADAMCZYK B J, LEHTI-SHIU M D, FERNANDEZ D E. The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in *Arabidopsis* [J]. Plant J, 2007, 50(6): 1007–1019. doi: 10.1111/j.1365-313X.2007.03105.x.
- [24] BORNER R, KAMPMANN G, CHANDLER J, et al. A MADS domain gene involved in the transition to flowering in *Arabidopsis* [J]. Plant J, 2000, 24(5): 591–599. doi: 10.1046/j.1365-313x.2000.00906.x.
- [25] HARTMANN U, HÖHMANN S, NETTESHEIM K, et al. Molecular cloning of SVP: A negative regulator of the floral transition in *Arabidopsis* [J]. Plant J, 2000, 21(4): 351–360. doi: 10.1046/j.1365-313X.2000.00682.x.
- [26] LEE H, SUH S S, PARK E, et al. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in *Arabidopsis* [J]. Genes Dev, 2000, 14(18): 2366–2376. doi: 10.1101/gad.813600.
- [27] MICHAELS S D, DITTA G, GUSTAFSON-BROWN C, et al. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization [J]. Plant J, 2003, 33(5): 867–874. doi: 10. 1046/j.1365-313X.2003.01671.x.

- [28] MICHAELS S D, AMASINO R M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering [J]. Plant Cell, 1999, 11(5): 949–956. doi: 10.1105/tpc.11.5.949.
- [29] RATCLIFFE O J, KUMIMOTO R W, WONG B J, et al. Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold [J]. Plant Cell, 2003, 15(5): 1159–1169. doi: 10.1105/tpc.009506.
- [30] RATCLIFFE O J, NADZAN G C, REUBER T L, et al. Regulation of flowering in *Arabidopsis* by an *FLC* homologue [J]. Plant Physiol, 2001, 126(1): 122–132. doi: 10.1104/pp.126.1.122.
- [31] SCORTECCI K C, MICHAELS S D, AMASINO R M. Identification of a MADS-box gene, *FLOWERING LOCUS M*, that represses flowering [J]. Plant J, 2001, 26(2): 229–236. doi: 10.1046/j.1365-313X.2001.01024.x.
- [32] ZHANG H M, FORDE B G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture [J]. Science, 1998, 279(5349): 407–409. doi: 10.1126/science.279.5349.407.
- [33] FERRÁNDIZ C, LILJEGREN S J, YANOFSKY M F. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development [J]. Science, 2000, 289(5478): 436–438. doi: 10.1126/science.289.5478.436.
- [34] GU Q, FERRÁNDIZ C, YANOFSKY M F, et al. The *FRUITFULL* MADS-box gene mediates cell differentiation during *Arabidopsis* fruit development [J]. Development, 1998, 125(8): 1509–1517.
- [35] LILJEGREN S J, DITTA G S, ESHED Y, et al. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis [J]. Nature, 2000, 404(6779): 766–770. doi: 10.1038/35008089.
- [36] PINYOPICH A, DITTA G S, SAVIDGE B, et al. Assessing the redundancy of MADS-box genes during carpel and ovule development [J]. Nature, 2003, 424(6944): 85–88. doi: 10.1038/nature01741.
- [37] NESI N, DEBEAUJON I, JOND C, et al. The TRANSPARENT

TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat [J]. Plant Cell, 2002, 14(10): 2463–2479. doi: 10.1105/tpc. 004127.

- [38] MARTINEZ-CASTILLA L P, ALVAREZ-BUYLLA E R. Adaptive evolution in the *Arabidopsis* MADS-box gene family inferred from its complete resolved phylogeny [J]. Proc Natl Acad Sci USA, 2003, 100 (23): 13407–13412. doi: 10.1073/pnas.1835864100.
- [39] LITT A, IRISH V F. Duplication and diversification in the APETALA1/ FRUITFULL floral homeotic gene lineage: Implications for the evolution of floral development [J]. Genetics, 2003, 165(2): 821–833.
- [40] CAUSIER B, CASTILLO R, ZHOU J L, et al. Evolution in action: Following function in duplicated floral homeotic genes [J]. Curr Biol, 2005, 15(16): 1508–1512. doi: 10.1016/j.cub.2005.07.063.
- [41] IRISH V F, LITT A. Flower development and evolution: Gene duplication, diversification and redeployment [J]. Curr Opin Genet Dev, 2005, 15(4): 454–460. doi: 10.1016/j.gde.2005.06.001.
- [42] PAŘENICOVÁ L, DE FOLTER S, KIEFFER M, et al. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in *Arabidopsis*: New openings to the MADS world [J]. Plant Cell, 2003, 15(7): 1538–1551.
- [43] NAM J, KIM J, LEE S, et al. Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms [J]. Proc Natl Acad Sci USA, 2004, 101(7): 1910–1915. doi: 10.1073/pnas.0308430100.
- [44] FERNANDEZ D E, WANG C T, ZHENG Y M, et al. The MADSdomain factors AGAMOUS-LIKE15 and AGAMOUS-LIKE18, along with SHORT VEGETATIVE PHASE and AGAMOUS-LIKE24, are necessary to block floral gene expression during the vegetative phase [J]. Plant Physiol, 2014, 165(4): 1591–1603. doi: 10.1104/pp.114.242990.