鹅掌楸 LcUGE 基因的克隆和组织表达分析

李嘉昱, 郝自远, 申宇芳, 李火根*

(南京林业大学南方现代林业协同创新中心,南京 210037)

摘要:为了解鹅掌楸(*Liriodendron chinense*)的 *UGE* 基因功能,采用 RACE 和 EPIC-PCR 技术克隆到 2 个 *UGE* 基因,命名为 *LcUGE1* 和 *LcUGE2*。结果表明,*LcUGE1* 基因的 cDNA 全长为1 531 bp,包含1 050 bp 的开放阅读框,编码 349 个氨基酸,gDNA 长度为 11 920 bp; *LcUGE2* 基因的 cDNA 长度为 1 378 bp,包含1 056 bp 的开放阅读框,编码 351 个氨基酸,gDNA 长度为 6 544 bp。*LcUGE1* 和 *LcUGE2* 基因均含有 9 个外显子和 8 个内含子,且外显子长度和内含子剪切位点序列几乎一致,但内 含子片段长度存在显著差异。编码的 LcUGE1 和 LcUGE2 蛋白高度保守,保守性达到 82%。*LcUGE1* 基因在雄蕊中表达量 最高,而 *LcUGE2* 基因则在花萼中表达量最高。这表明 *LcUGEs* 基因可能参与鹅掌楸的生殖发育过程。 **关键词:** 鹅掌楸; *LcUGE*; 基因克隆;基因表达 doi: 10.11926/jtsb.3881

uoi. 10.11720/jtsb.3001

Cloning and Expression of LcUGE in Liriodendron chinense

LI Jia-yu, HAO Zi-yuan, SHEN Yu-fang, LI Huo-gen*

(Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China)

Abstract: In order to understand the function of *UGE* in *Liriodendron chinense*, two genes, named *LcUGE1* and *LcUGE2*, were obtained by RACE and EPIC-PCR. The result showed that the full-length cDNA of *LcUGE1* and *LcUGE2* were 1 531 and 1 378 bp with 1 050 and 1 056 bp open reading frame (ORF), and encoding 349 and 351 amino acids, respectively. Their genome DNA length were 11 920 and 6 544 bp, respectively. Both of *LcUGE1* and *LcUGE2* genes contained 9 exons and 8 introns. Though the exon length and intron splicing site sequence were almost similar, thier intron fragment length were different. The nucleic acid sequences of *LcUGE1* and *LcUGE2* were highly conserved up to 82% similarity. The expression of *LcUGE1* and *LcUGE2* were the highest in stamens and calyx, respectively. Therefore, the *LcUGE* genes could be involved in reproductive development of *L. chinense*.

Key words: Liriodendron chinense; LcUGE; Gene clone; Gene expression

UGE 基因为脱氢酶/还原酶超基因家族成员 (SDRs)^[1],编码 UDP-半乳糖/葡萄糖-4-差向异构酶, UGE 是半乳糖代谢途径中的一个关键酶,与半乳糖 激酶、1-磷酸半乳糖尿苷酰转移酶共同参与半乳糖 代谢活动^[2-3],催化 UDP-葡萄糖与 UDP-半乳糖间的 相互转化^[1]。高等植物中多种复杂碳水化合物在糖 代谢中起着重要作用,一些糖类如蔗糖、果聚糖、 棉子糖等可以作为渗透调节物质保护细胞抵御外界 胁迫。UGE 可以使植株的棉子糖含量增加,而棉子 糖作为渗透保护物质,可以保护植物细胞免受非生 物胁迫引起的活性氧伤害^[4]。UDP-半乳糖/葡萄糖-4-差向异构酶在生物体中广泛存在,植物中 UDP-

收稿日期: 2018-01-17 **接受日期**: 2018-03-06

基金项目:国家自然科学基金项目(31770718, 31470660);江苏省高校优势学科建设工程项目(PAPD)资助

This work was supported by the National Natural Foundation of China (Grant No. 31770718, 31470660), and the Project for Priority Academic Development of Jiangsu Higher Education Institutions (PAPD).

作者简介:李嘉昱(1994~),女,在读研究生,主要从事森林遗传学研究。E-mail: lijiayu_94@163.com

^{*} 通信作者 Corresponding author. E-mail: hgli@njfu.edu.cn

糖作为主要的代谢中间产物、存储物质和结构组分, 为糖蛋白和糖脂提供重要的前体物质,也是合成纤维 素、木葡聚糖等细胞壁多糖的重要底物[5-6]。除合成 代谢外, UGE 也参与到半乳糖的分解代谢中, 缺少 UGE 会加剧植物和酵母中半乳糖的毒性作用[7]。这 表明 UGE 基因在植物生长发育过程中发挥重要的 作用。目前已从许多植物中克隆出多个 UGE 基因, 拟南芥(Arabidopsis thaliana)中已成功鉴定了5个 UGE 基因成员^[7];经数据库搜索和荧光定量 PCR 分析表明,大麦(Hordeum vulgare)中至少有2个 UGE 基因成员^[8];在水稻(Oryza sativa)中至少有 4 个 UGE 基因成员^[9]; 在毛竹(Phyllostachys edulis) 中克隆了 UGE 基因,转化拟南芥后,认为其可能与 次生根形成有关[10]。毛竹过表达 UGE 基因能提高 非生物胁迫的抗性,这表明在毛竹生长发育过程 中,PeUGE可能是细胞壁多糖合成中的一个重要基 因。UGE 在半乳糖代谢和碳水化合物合成方面有重 要的作用, 它能将过量的 UDP-半乳糖转化成 UDP-葡萄糖, 拟南芥 UGE 基因编码的 5 个 UGE 都能够 提高半乳糖的耐受性[7],减少半乳糖对植株的毒 性作用。UGE 基因还可能会参与到胁迫应答过程 中[11],转 OsUGE 植株在干旱、盐以及低温胁迫下 耐受性均得到提高,而植株表型不发生改变[4]。UGE 基因参与细胞壁多糖和重要糖类化合物的生物合 成[12-13]、抵御胁迫环境等诸多生理生化过程,在植 物的生长发育中起着至关重要的作用。

鹅掌楸(Liriodendron chinense)主要分布在我国 中部及长江以南的山区,是我国重要的珍贵用材和 园林观赏树种,鹅掌楸种群规模小、生境濒危,现 已被我国列为濒危保护植物^[14-15],因此,研究鹅掌 楸的适应性对其推广栽培有重要的意义^[16]。本研究 以鹅掌楸为研究材料,利用 RT-PCR 和 RACE 技术 克隆鹅掌楸 UGE 基因全长表达序列,并进行生物 信息学和组织表达特异性分析,为研究鹅掌楸适应 性和抗逆生理奠定基础。

1 材料和方法

1.1 材料

2016年春季,在南京林业大学下蜀实习林场鹅 掌楸属种源试验林地采集材料,并迅速放入液氮中 冷冻,带回实验室置于-80℃超低温冰箱中保存备 用。基因克隆材料为26年生鹅掌楸(种源为松阳) 叶片和花瓣的混合样,qPCR 材料为叶片、花瓣、 雄蕊、雌蕊、花萼、花芽、叶芽和茎。

1.2 基因克隆及 ORF 区验证

用植物总 RNA 提取试剂盒(TIANGEN)提取鹅 掌楸总 RNA,用 Thermo NanoDrop 2000 紫外分光 光度计检测提取的 RNA 浓度和纯度,用 1%的琼脂 糖凝胶电泳检测 RNA 的完整性。以提取的总 RNA 为模板,按照 PrimeScriptTM RT Master Mix 反转录 试剂盒(TaKaRa)说明书合成 cDNA 第一链,用 3'-Full RACE Core Set with PrimeScriptTM RTase 反转录试 剂盒合成 cDNA 的 3'末端序列,用 SMARTer[®] RACE 5'/3' Kit (TaKaRa)反转录试剂盒合成 cDNA 的 5'末 端序列。

在北美鹅掌楸转录组数据库(http://ancangio.uga. edu/content/liriodendron-tulipifera)中搜索 UGE 基因 的 EST 序列,用 Oligo 7 软件设计中间片段的引物 (表 1),以 cDNA 第一链为模板扩增中间片段。根 据中间片段设计 3' RACE 引物,以反转录后 3' RACE 的 cDNA 为模板进行巢式 PCR,克隆测序后将中间 片段和 3' RACE 进行拼接。根据拼接结果设计 5' RACE 引物,以反转录后 5' RACE 的 cDNA 为模板进 行巢式 PCR,得到 5'端序列后拼接 cDNA 全长。

用 ORF Finder 在线软件(https://www.ncbi.nlm. nih.gov/orffinder)预测 UGE 基因的开放阅读框,并在 ORF 区的两端设计引物,反向引物不包括终止 密码子,进行 PCR 扩增,将 PCR 产物切胶回收,连接 *pEASY*[®]-Blunt 克隆载体后涂板测序,验证 UGE 基因的 ORF 区。

1.3 生物信息学分析

用在线软件 ExasyProtParam (http://web.expasy. org/protparam/)预测 LcUGE 蛋白质的理化性质,用 在线软件 TargetP 1.1 Server (http://www.cbs.dtu.dk/ services/TargetP/)预测 LcUGE 蛋白质的亚细胞位置。 利用在线软件 SOPMA (https://npsa-prabi.ibcp.fr/cgibin/npsa_automat.pl?page=npsa_sopma.html)对 LcUGE 蛋白质进行二级结构预测。用 InterProScan (http:// www.ebi.ac.uk/InterProScan/index.html)工具进行结构 域和功能位点的预测。在 NCBI 数据库的 BLASTP 中比对 LcUGE 蛋白质的同源序列,选取相似性较 高的蛋白序列,用 MEGA 6.0 软件构建系统进化树, 预测 LcUGE 与其他树种 UGE 的亲缘关系^[17]。

表1 基因克隆所用引物序列

Table 1 Primer sequences for gene clone

引物 Primer	序列 Sequence (5'~3')	退火温度 Annealing temperature (℃)
LcUGE1-F	ATCAAAAGAGTCACCGAAC	53.6
LcUGE1-R	TGTACACTTCACAACCGAT	53.8
LcUGE2-F	GATCTCGGAACCTTAGCTT	54.7
LcUGE2-R	GGCAGTACAACCTATGTCA	54.4
LcUGE1-gsp1	CTGACTGGAAGATCATACTGCT	59.1
LcUGE1-gsp2	GCTCATCCCAGTGGCAATATTGGTGA	63.2
LcUGE2-gsp1	GCACCTTGAATTTGATTGAGT	55.4
LcUGE2-gsp2	GAGGACTTTGAATTAAAGGCAATGAACCC	61.9
LcUGE1-gsp1	ATTTCCGCATCGCCAGGTTGTCTTGCAG	69.7
LcUGE1-gsp2	TGTACACTTCACAACCGAT	53.8
LcUGE2-gsp1	CCATTGGTCTCTGCACATCTCCTCTACGCCAT	69.7
LcUGE2-gsp2	TAACATGGATGTAGTCTCGAATCGC	58.6
LcUGE1-F	ATGACGAAGAACATCTTAATCAC	53.4
LcUGE1-R	ATTGGCGGAGTCGGGTGAA	58.8
LcUGE2-F	ATGACGTCTGAGAAACAGCAAT	56.4
LcUGE2-R	AGGTCGGGACTGGTACCCC	58.1

1.4 LcUGEs 基因的 gDNA 克隆和结构分析

内含子是分析物种间种群结构和重建近缘物 种间关系较为适合的标记^[18–19]。Lessa 开创了内含 子靶向 PCR^[20]。非编码序列,尤其是内含子序列的 变异性是群体变异和分类的有价值标记,用其保守的 外显子引物通过 PCR 方法来扩增分析,被称为 EPIC-PCR 技术(exon-primed-intron-crossing-polymerase chain reaction)^[21–22],这种方法可以通过证明内含子 长度多态性来识别内含子序列显著的变异性^[23]。

用 DNA secure Plant Kit 新型植物基因组 DNA 提取试剂盒(TIANGEN DP320)从鹅掌楸的叶片中 提取基因组 DNA。将获得的 LcUGE 基因 cDNA 序 列与拟南芥、水稻等数据库基因组比对,推测 LcUGE 基因外显子与内含子的断裂位点,利用在外 显子区域设计引物(表 2)扩增内含子序列,逐段克隆 出 LcUGE1 和 LcUGE2 基因内含子,最终利用 Seqman 2 软件完成 gDNA 的拼接与验证。

EPIC-PCR 反应体积 50 μ L,包括 PrimeSTAR Max DNA Polymerase (TaKaRa) 25 μ L,正反向引物 各 2 μ L,灭菌水 20 μ L;反应程序为:预变性 98℃ 1 min;变性 98℃ 10 s,退火 15 s,延伸 5 s, 30~35 个循环。

1.5 组织表达分析

分别提取鹅掌楸的叶、茎、花瓣、花萼、雄蕊、 雌蕊、花芽、叶芽等组织的 RNA,用 PrimeScript[™] RT Master Mix (Perfect Real Time)反转录试剂盒 (TaKaRa)合成 cDNA 后稀释 10 倍,将 cDNA 模板 统一稀释到 1 000 ng µL⁻¹,使用 SYBR[®] Premix Ex TaqTM (Tli RNaseH Plus)试剂盒进行实时定量 RT-PCR (qRT-PCR),以 *Actin* 作为内参基因^[24],引物 Actin-F (5'-GATCTTGCTGGGCGTGACCTC-3')和 Actin-R (5'-CCATCGGGCATCTCGTAGC-3'),检测 *LcUGE1* 与 *LcUGE2* 在组织中的表达情况。

实时定量反应体积为 20 μ L,包括 SYBR Premix Ex *Taq* (Tli RNaseH Plus)(2×) 10 μ L,正反向引物(表 3)各 0.4 μ L,ROX Reference Dye (50×) 0.4 μ L,cDNA 模板 2 μ L,灭菌水 6.8 μ L;在 ABI StepOnePlus 实 时定量仪器上的反应程序为:预变性 95℃ 30 s; 95℃ 5 s,60℃ 30 s,40 个循环。

2 结果和分析

2.1 鹅掌楸总 RNA 提取结果

提取鹅掌楸总 RNA 后,用 NanoDrop 2000 分 光光度计检测 RNA 的浓度和纯度,表明 OD₂₆₀/OD₂₈₀ 均为 1.8~2.2, OD₂₆₀/OD₂₃₀大于 2。用琼脂糖凝胶 电泳检测 RNA 的完整性,28S RNA 和 18S RNA 清 晰可见,且前者亮度约为后者的 2 倍(图 1)。

2.2 LcUGEs 基因克隆和 ORF 区验证

以LcUGE1 基因 cDNA 第一链为模板扩增出长度为 670 bp 的中间片段,然后分别以 3' RACE cDNA 和 5' RACE cDNA 为模板,结合特异性引物

表 2 LcUGE1 与 LcUGE2 基因组引物序列

Table 2 Primer sequences for LcUGE1 and LcUGE2 genome

引物 Primer	序列 Sequence (5'~3')	退火温度 Annealing temperature (℃)	扩增范围 Range
LcUGE1-W1-F	TAATCTCGACAACTCCTCCGAT	56.5	内含子1
LcUGE1-W1-R	CAAGGCTTCTTTGTCCCGAA	56.9	Intron1
LcUGE1-W2-F	GTTGATCTTCGGGACAAA	50.7	内含子2
LcUGE1-W2-R	TATTATAGTAAAGCAGCGGTT	53.0	Intron2
LcUGE1-W3-F	GCACAATAAATCTTTTGGAAGTCA	55.7	内含子3
LcUGE1-W3-R	CCATACGGATTTGTTGCAC	54.4	Intron 3
LcUGE1-W4-F	CCACTATGTGCAACAAATCCG	59.0	内含子 4~6
LcUGE1-W4-R	GCCTCGATCAAATTCAAACCA	56.8	Intron 4–6
LcUGE1-W5-F	ATCGGTTGTGAAGTGTACA	54.4	内含子 7~8
LcUGE1-W5-R	AGATTGGGTGGTAAGAGGG	54.8	Intron 7–8
LcUGE2-W1-F	AGCAATCCATCCTCGTCACC	59.6	内含子 1
LcUGE2-W1-R:	ATTCTACACATGCGACACGTT	58.1	Intron 1
LcUGE2-W2-F	CCGGAATAAGGACGATT	45.3	内含子 2
LcUGE2-W2-R	AATCAAATTCAAGGTGCCAA	49.5	Intron 2
LcUGE2-W3-F	AGCCGTTACTTTACTACAAC	48.7	内含子3
LcUGE2-W3-R	ATATGGGTTCATTGCCTT	45.8	Intron 3
LcUGE2-W4-F:	CATCTGCAACTGTTTATGGTCA	57.4	内含子 4~6
LcUGE2-W4-R:	ATGCAGCAACCATTTCGAAG	58.4	Intron 4–6
LcUGE2-W5-F:	CGGCACATCTGTCTTCG	55.6	内含子 7~8
LcUGE2-W5-R:	CACATCTCCTCTACGCCAT	56.1	Intron 7–8

表3qPCR 引物

Table 3 Primer sequences for qPCR

引物 Primer	序列 Sequence (5/~3)	引物 Primer	序列 Sequence (5/2.3/)
LcUGE1-qF	CTATGGTTCACCCGACTCC	LcUGE2-qF	TAAATCCAACCCAGGTGCAT
LcUGE1-qR	TAAATCCAACCCAGGTGCAT	LcUGE2-qR	TAAATCCAACCCAGGTGCAT

图 1 RNA 提取。M: DL2 000 DNA Marker; 1: 叶片; 2: 花瓣; 3: 茎; 4: 花萼; 5: 雄蕊; 6: 雌蕊; 7: 花芽; 8: 叶芽。

Fig. 1 RNA extraction. M: DL2 000 DNA Marker ; 1: Leaf; 2: petal; 3: Stem; 4: Petal; 5: Steman; 6: Pistil; 7: Flower bud; 8: Leaf bud.

进行巢式 PCR,最后将序列拼接得到 LcUGE1 基因 cDNA,长度为1531 bp。以 LcUGE2 基因的 cDNA 第一链为模板扩增出长度为 635 bp 的中间片段,用同 样的方法得到 LcUGE2 基因 cDNA,长度为1378 bp (图 2)。

ORF Finder 预测 *LcUGE1* 开放阅读框(ORF)长 度为 1 050 bp, *LcUGE2* 基因的为 1 056 bp, 通过设

计引物扩增 ORF 区, 经测序得到的序列与预测的 序列比对一致。

2.3 LcUGEs 基因 gDNA 序列克隆和结构分析

采用 EPIC-PCR 技术扩增 LcUGEs 内含子,用 Seqman 2 软件对序列重叠区域拼接,获得基因组序 列。结果表明,LcUGE1 和 LcUGE2 基因的 gDNA 序列长度差异较大,*LcUGE1* 长度为 11 920 bp,而 *LcUGE2* 长度仅为 6 544 bp,*LcUGE1* 的 cDNA 和 gDNA 的 G+C 含量分别为 45.4%和 38.7%;*LcUGE2* 分别为 44.8%和 39.1%。采用 GeneStructure Display Server 在线软件(http://gsds.cbi.pku.edu.cn/)分析 *Lc-UGE1* 和 *LcUGE2* 基因的 gDNA 和 cDNA 序列(图 3),可见两个基因均含有 9 个外显子和 8 个内含子, 且每个外显子长度几乎一致,说明两个 *LcUGE* 基 因的长度差异来自于内含子。 采用 Splign 软件对 LcUGE1 和 LcUGE2 基因结构进行分析(表 4),可见内含子差异主要来源于内含子1、2、5、6,其中 LcUGE1 基因的内含子1、2、6 长度远大于 LcUGE2,仅第5个内含子长度比 LcUGE2 小。内含子剪切识别位点分析表明,除 LcUGE1 内含子 2 为 AG/TG 类型之外,其余剪切识别位点均遵循 AG/GT 剪切原则,这与拟南芥、水稻等 UGE 基因剪切识别位点一致,表明不同物种间共用一套剪切体。

图 2 LcUGE 基因的 PCR 扩增结果。A: UGE1; B: UGE2; 1: 中间片段; 2: 3' RACE; 3: 5' RACE; 4: ORF; M: 2 000 bp DNA Ladder Marker。 Fig. 2 PCR of LcUGEs. A: UGE1; B: UGE2; 1: Fragment; 2: 3' RACE; 3: 5' RACE; 4: ORF; M: 2 000 bp DNA Ladder Marker.

表 4 LcUGEs 基因结构

Table 4 Structure of LcUGE genes

	LcUGE1			LcUGE2				
序号 No.	内含子长度 Intron length (bp)	外显子长度 Exon length (bp)	插入位置 Insert position (bp)	剪接位点 Splicing site	内含子长度 Intron length (bp)	外显子长度 Exon length (bp)	插入位置 Insert position (bp)	剪接位点 Splicing site
1	2 194	183	183	/GT	119	198	198	/GT
2	3 760	50	234	AG/TG	1 454	50	249	AG/GT
3	1 536	136	369	AG/GT	1 047	136	384	AG/GT
4	92	102	471	AG/GT	172	102	486	AG/GT
5	84	228	699	AG/GT	1 257	228	714	AG/GT
6	1 289	82	780	AG/GT	100	82	795	AG/GT
7	372	83	864	AG/GT	580	83	879	AG/GT
8	1 039	92	957	AG/GT	429	92	972	AG/GT
9	_	97	-	AG/	_	85	_	AG/

图 3 鹅掌楸 LcUGE1 和 LcUGE2 基因结构

2.4 LcUGEs 的生物信息学分析

理化性质 *LcUGE1* 基因编码 349 个氨基酸, LcUGE1 分子式为C₁₇₁₄H₂₆₇₅N₄₅₉O₅₀₈S₁₂,包含 5 368 个原子,分子质量为 38.2 kD,带正电荷(Asp+Glu) 数目 41,带负电荷(Arg+Lys)数目 38,等电点为 6.19, 属于酸性蛋白。LcUGE1 所含的甘氨酸(Gly)最多, 达 9.7%;其次是异亮氨酸(Leu, 8.3%);色氨酸(Trp) 最少(1.4%);无吡咯赖氨酸(Pyl)和硒半胱氨酸(Sec)。 不稳定系数是 27.80,为稳定蛋白。疏水性平均值 为-0.154,是亲水蛋白。*LcUGE2* 基因编码 351 个 氨基酸,LcUGE2 分子式是 C₁₇₃₅H₂₇₁₃N₄₇₁₀₅₁₅S₁₃,包 含 5 447 个原子,分子质量为 38.8 kD,带正电荷 (Asp+Glu)数目 43,负电荷(Arg+Lys)数目 39,等电 点为 6.02,属于酸性蛋白。LcUGE2 的甘氨酸(Gly) 最多,占 9.1%,其次是异亮氨酸(Leu, 8.5%),最少 是色氨酸(Trp, 1.4%)。无吡咯赖氨酸(Pyl)和硒半胱 氨酸(Sec)。不稳定系数是 27.81,为稳定蛋白。疏 水性平均值为-0.253,是亲水蛋白。

亚细胞定位预测 用在线软件 TargetP 1.1 Server (http://www.cbs.dtu.dk/services/TargetP/)分析 蛋白质亚细胞定位,预测 LcUGE1 和 LcUGE2 的定 位为除线粒体和叶绿体之外的其他位置,预测的可 信度分别为 4 和 2,较为可信,初步认为其蛋白质 定位于除线粒体和叶绿体的其它位置。

系统发育分析 将 LcUGE1 和 LcUGE2 与其 他物种进行 BLASTP 同源性比对,用 UPGMA 法构 建系统进化树。从图 4 可见, LcUGE1 与罂粟科 (Papaveraceae)博落回(*Macleaya cordata*)的 McUGE 亲缘关系较近,LcUGE2 与豆科(Leguminosae)豌豆 (*Pisum sativum*)的 PsUGE1 亲缘关系较近。

图 4 LcUGE1 和 LcUGE2 与其他植物 UGE 的系统进化树

Fig. 4 Phylogenetic tree of LcUGE1 and LcUGE2 with UGE in other plants

蛋白质二级结构预测 采用在线 SOPMA 软件预测,LcUGE1 的二级结构由α螺旋(31.52%)、β 转角(11.17%)、无规则卷曲(36.96%)和延伸链(20.34%)构成,α螺旋是该蛋白质二级结构的主要成分。LcUGE2 的二级结构中α螺旋占 40.46%,β 转角占 10.54%,无规则卷曲占 33.05%,延伸链占 15.95%。

蛋白质同源性分析 通过 InterProScan 在线 工具预测蛋白质保守结构域,结果表明,在 LcUGE1 和 LcUGE2 的 N 端有 UGE 家族最典型的 NADPH 结合域(GXXGXXG),还有 1 个三联体催化保守域 (YXXXK),C 端结构不同。用 NCBI 搜索与 LcUGE1 和 LcUGE2 高度同源的蛋白质,并用 DNAMAN 软 件对氨基酸序列进行多重比对,结果表明,LcUGE1

图 5 LcUGE 的二级结构预测。A: LcUGE1; B: LcUGE2。

Fig. 5 Secondary structure prediction of LcUGEs. A: LcUGE1; B: LcUGE2.

图 6 UGE 的氨基酸序列比对。Lc: 鹅掌楸; Mc: 博落回; Tc: 可可树; Ps: 豌豆; Aa: Anthurium amnicola; Ct: 瓜儿豆。

Fig. 6 Alignment of amino acid sequences of UGEs. Lc: Liriodendron chinense; Mc: Macleaya cordata; Tc: Theobroma cacao; Ps: Pisum sativum; Aa: Anthurium amnicola; Ct: Cyamopsis tetragonoloba.

和 LcUGE2 与博落回的 McUGE、可可树(*Theobroma cacao*)的 TcUGE、豌豆的 PsUGE1、*Anthurium amnicola*的 AaUGE1 和瓜儿豆(*Cyamopsis tetrago-noloba*)的 CtUGE 均含有同样的保守结构域,且相 似度为 82.05%。

2.5 组织特异性表达分析

分别提取鹅掌楸茎、叶、花瓣、花萼、雄蕊、 雌蕊、花芽和叶芽 8 个组织的 RNA, 经反转录后用 qTR-PCR 方法分析 *LcUGE* 的组织表达模式。结果 表明,LcUGE1 与 LcUGE2 在 8 个组织中均有表达, LcUGE1 的相对表达量以雄蕊>花芽>叶>花萼> 雌蕊>花瓣>茎>叶芽,其中在雄蕊的相对表达量 显著高于其他组织;LcUGE2 的相对表达量以花 萼>花芽>雄蕊>雌蕊>花瓣>叶芽>茎>叶片,其 中在花萼、雄蕊、花芽的相对表达量显著高于其 他组织。这表明LcUGEs 基因在生殖器官中的表达 量显著高于营养器官,代谢旺盛器官高于代谢缓慢 的器官,说明LcUGEs 基因很可能为生长发育相关 的组成型基因。

图 7 鹅掌楸 LcUGE1 与 LcUGE2 基因的组织表达

Fig. 7 Expression of LcUGE1 and LcUGE2 in tissues of Liriodendron chinense

3 讨论

本研究从鹅掌楸中克隆得到了 2 个 LcUGE 基因,并对其编码的蛋白质进行了生物信息学分析,同源序列比对表明 LcUGEs 蛋白有 UGE 家族典型的结构域。系统进化分析表明 LcUGE1 与博落回的McUGE 亲缘关系最近,LcUGE2 与豌豆的 PsUGE1 亲缘关系最近;同时,LcUGE1 与拟南芥的 AtUGE5 聚为一类,LcUGE2 与拟南芥的 AtUGE3 聚为一类,这可能与 UGE 在不同种间的进化差异有关。

基因结构和内含子研究是进化生物学研究的 热点,本研究采用 EPIC-PCR 技术从鹅掌楸基因组 中扩增出 LcUGEs 的 gDNA,与拟南芥等物种的 UGE 基因结构相似,均含有 9 个外显子和 8 个内含 子。但 LcUGE1 基因内含子 1 与内含子 2 的长度显 著大于 LcUGE2 基因的,LcUGE1 的 gDNA 长度 11.9 kb,约为 LcUGE2 的gDNA 长度的 2 倍,而他 们的外显子长度相近,长度差异主要集中在第 1、2、 5 和 6 个内含子上,因此推测该家族基因在经历基 因家族扩张后,内含子区域出现过大片段插入/缺 失,而外显子区域由于受到强烈的纯化选择作用, 并在进化过程中固定下来,因此外显子序列长度和 编码蛋白保持相对稳定。

本研究预测鹅掌楸 LcUGEs 蛋白定位于除线粒

体和叶绿体以外的其他位置。曾有研究通过核磁共 振观察到大多数细胞中的UDP-半乳糖和UDP-葡萄 糖都定位在细胞质中^[25],有报道 UDP-半乳糖和 UDP-葡萄糖可用来合成高尔基体中非纤维素的多 糖和糖蛋白,并且由特定的转运蛋白将核糖从细胞 质转移到高尔基体腔囊泡中[26]。从拟南芥中已经克 隆了这种核糖转运基因,基因产物会将 UDP-半乳 糖和 UDP-葡萄糖转运到高尔基体中^[27]。对于鹅掌 楸中是否也存在这种转运蛋白还不确定,LcUGE1 与 LcUGE2 的亚细胞定位还需要进一步研究。组织 特异性表达表明, LcUGE1 和 LcUGE2 在 8 个组织 中均有表达, LcUGE1 在雄蕊中相对表达量最丰富, 其次是花芽,在叶芽的表达量最少,而 LcUGE2 在 花萼、雄蕊和花瓣中相对表达量均显著高于其他组 织, 这与拟南芥 AtUGE5 和芜菁(Brassica rapa) Br-UGE5 在花器官中的表达类似,可能与其在花器官 中的功能有关[28]。鹅掌楸 LcUGEs 在生殖器官中的 表达量最高, 生殖器官是植物代谢最旺盛的器官之 一, 推测 LcUGE1 基因为与代谢密切相关的组成型 基因,除参与细胞壁的合成过程外,可能还与生殖 器官发育有关。

有研究表明, 拟南芥的 5 个 UGE 都能够提高 半乳糖耐受性, AtUGE2 和 AtUGE4 基因会影响植 株的生长发育和细胞壁糖类物质的合成, AtUGE1 和 AtUGE5 基因可能会参与胁迫应答机制中^[11]。这 表明 UGE 基因不仅在半乳糖代谢和碳水化合物合 成方面有着重要的作用,还可能增加植株忍受非生 物胁迫的能力。本研究获得鹅掌楸 LcUGE1 和 Lc-UGE2 基因的全长序列,并对基因断裂结构进行了 初步分析,为后续 LcUGE 基因的调控表达元件和 功能研究提供参考。

参考文献

- REITER W D, VANZIN G F. Molecular genetics of nucleotide sugar interconversion pathways in plants [J]. Plant Mol Biol, 2001, 47(1/2): 95–113. doi: 10.1023/A:1010671129803.
- [2] ROSS K L, DAVIS C N, FRIDOVICH-KEIL J L. Differential roles of the Leloir pathway enzymes and metabolites in defining galactose sensitivity in yeast [J]. Mol Genet Met, 2004, 83(1/2): 103–116. doi: 10.1016/j.ymgme.2004.07.005.
- [3] HOLDEN H M, RAYMENT I, THODEN J B. Structure and function of enzymes of the Leloir pathway for galactose metabolism [J]. J Biol Chem, 2003, 278(45): 43885–43888. doi: 10.1074/jbc.R300025200.
- [4] LIU H L, DAI X Y, XU Y Y, et al. Over-expression of *OsUGE-1* altered raffinose level and tolerance to abiotic stress but not morphology in *Arabidopsis* [J]. J Plant Physiol, 2007, 164(10): 1384–1390. doi: 10. 1016/j.jplph.2007.03.005.
- [5] KLECZKOWSKI L A, KUNZ S, WILCZYNSKA M. Mechanisms of UDP-glucose synthesis in plants [J]. Crit Rev Plant Sci, 2010, 29(4): 191–203. doi: 10.1080/07352689.2010.483578.
- [6] SEIFERT G J, BARBER C, WELLS B, et al. Growth regulators and the control of nucleotide sugar flux [J]. Plant Cell, 2004, 16(3): 723– 730. doi: 10.1105/tpc.019661.
- [7] BARBER C, RÖSTI J, RAWAT A, et al. Distinct properties of the five UDP-D-glucose/UDP-D-galactose 4-epimerase isoforms of *Arabidopsis thaliana* [J]. J Biol Chem, 2006, 281(25): 17276–17285. doi: 10.1074/ jbc.M512727200.
- [8] ZHANG Q S, HRMOVA M, SHIRLEY N J, et al. Gene expression patterns and catalytic properties of UDP-D-glucose 4-epimerases from barley (*Hordeum vulgare* L.) [J]. Biochem J, 2006, 394(Pt 1): 115–124. doi: 10.1042/BJ20051329.
- [9] KIM S K, KIM D H, KIM B G, et al. Cloning and characterization of the UDP glucose/galactose epimerases of *Oryza sativa* [J]. J Korean Soc Appl Biol Chem, 2009, 52(4): 315–320. doi: 10.3839/jksabc.2009.056.
- [10] SUN H Y, LI L C, LOU Y F, et al. Cloning and preliminary functional analysis of *PeUGE* gene from moso bamboo (*Phyllostachys edulis*) [J]. DNA Cell Biol, 2016, 35(11): 706–714. doi: 10.1089/dna.2016.3389.

- [11] RÖSTI J, BARTON C J, ALBRECHT S, et al. UDP-glucose 4-epimerase isoforms UGE2 and UGE4 cooperate in providing UDP-galactose for cell wall biosynthesis and growth of *Arabidopsis thaliana* [J]. Plant Cell, 2007, 19(5): 1565–1579. doi: 10.1105/tpc.106.049619.
- [12] SOLDO B, SCOTTI C, KARAMATA D, et al. The *Bacillus subtilis* Gne (GneA, GalE) protein can catalyse UDP-glucose as well as UDP-N-acetylglucosamine 4-epimerisation [J]. Gene, 2003, 319: 65–69. doi: 10.1016/S0378-1119(03)00793-5.
- [13] GUEVARA D R, EL-KEREAMY A, YAISH M W, et al. Functional characterization of the rice UDP-glucose 4-epimerase 1, *OsUGE1*: A potential role in cell wall carbohydrate partitioning during limiting nitrogen conditions [J]. PLoS One, 2014, 9(5): e96158. doi: 10.1371/ journal.pone.0096158.
- [14] WANG Z R. Utilization and Species Hybridization in *Liriodendron*[M]. Beijing: China Forestry Publishing House, 2005: 15–27.
 王章荣. 鹅掌楸属树种杂交育种与利用 [M]. 北京:中国林业出版社, 2005: 15–27.
- [15] LI H G, CHEN L, LIANG C Y, et al. A case study on provenance testing of tulip tree (*Liriodendron* spp.) [J]. China For Sci Technol, 2005, 19(5): 13–16. doi: 10.3969/j.issn.1000-8101.2005.05.005.
 李火根,陈龙,梁呈元,等. 鹅掌楸属树种种源试验研究 [J] 林业 科技开发, 2005, 19(5): 13–16. doi: 10.3969/j.issn.1000-8101.2005.05.005.
- [16] CHENG Y L, ZHONG W P, HAO Z Y, et al. Cloning and expression analysis of *CCD1* gene in *Liriodendron tulipifera* [J]. Mol Plant Breed, 2017, 15(6): 2139–2146. doi: 10.13271/j.mpb.015.002139.
 成彦丽, 仲维平, 郝自远, 等. 北美鹅掌楸 *CCD1* 基因的克隆与表 达分析 [J]. 分子植物育种, 2017, 15(6): 2139–2146. doi: 10.13271/j. mpb.015.002139.
- [17] TAMURA K, STECHER G, PETERSON D, et al. MEGA6: Molecular evolutionary genetics analysis, Version 6.0 [J]. Mol Biol Evol, 2013, 30 (12): 2725–2729. doi: 10.1093/molbev/mst197.
- [18] BERREBI P, RETIF X, FANG F, et al. Population structure and systematics of *Opsariichthys bidens* (Osteichthyes: Cyprinidae) in southeast China using a new nuclear marker: The introns (EPIC-PCR) [J]. Biol J Linn Soc Lond, 2006, 87(1): 155–166. doi: 10.1111/j.1095-8312. 2006.00563.x.
- [19] TAY W T, BEHERE G T, HECKEL D G, et al. Exon-primed introncrossing (EPIC) PCR markers of *Helicoverpa armigera* (Lepidoptera: Noctuidae) [J]. Bull Entomol Res, 2008, 98(5): 509–518. doi: 10.1017/ S000748530800583X.
- [20] LESSA E P. Rapid surveying of DNA sequence variation in natural populations [J]. Mol Biol Evol, 1992, 9(2): 323–330. doi: 10.1093/

oxfordjournals.molbev.a040723.

- [21] PALUMBI S R, BAKER C S. Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales [J]. Mol Biol Evol, 1994, 11(3): 426–435. doi: 10.1093/oxfordjournals.molbev. a040115.
- [22] SLADE R W, MORITZ C, HEIDEMAN A, et al. Rapid assessment of single-copy nuclear DNA variation in diverse species [J]. Mol Ecol, 1993, 2(6): 359–373. doi: 10.1111/j.1365-294X.1993.tb00029.x.
- [23] LARDEUX F, ALIAGA C, TEJERINA R, et al. Development of exonprimed intron-crossing (EPIC) PCR primers for the malaria vector *Anopheles pseudopunctipennis* (Diptera: Culicidae) [J]. C R Biol, 2012, 335(6): 398–405. doi: 10.1016/j.crvi.2012.05.002.
- [24] YANG Y, LI H G. Cloning of NAC gene from Liriodendron tulipifera and its expression analysis [J]. J Plant Res Environ, 2015, 24(3): 1–9. doi: 10.3969/j.issn.1674-7895.2015.03.01.
 杨颖, 李火根. 北美鹅掌楸 NAC 基因的克隆与表达分析 [J]. 植物

资源与环境学报, 2015, 24(3): 1-9. doi: 10.3969/j.issn.1674-7895.

2015.03.01.

- [25] BLIGNY R, GARDESTROM P, ROBY C, et al. ³¹P NMR studies of spinach leaves and their chloroplasts [J]. J Biol Chem, 1990, 265(3): 1319–1326.
- [26] MOORE P J, SWORDS K M, LYNCH M A, et al. Spatial organization of the assembly pathways of glycoproteins and complex polysaccharides in the golgi apparatus of plants [J]. J Cell Biol, 1991, 112(4): 589– 602. doi: 10.1083/jcb.112.4.589.
- [27] NORAMBUENA L, MARCHANT L, BERNINSONE P, et al. Transport of UDP-galactose in plants: Identification and functional characterization of AtUTr1, an *Arabidopsis thaliana* UDP-galactos/UDP-glucose transporter [J]. J Biol Chem, 2002, 277(36): 32923–32929. doi: 10. 1074/jbc.M204081200.
- [28] JUNG Y J, KYOUNG J H, NOU I S, et al. Molecular characterization of the UDP-glucose 4-epimerase (BrUGE) gene family in response to biotic and abiotic stress in Chinese cabbage (*Brassica rapa*) [J]. Plant Biotechnol Rep, 2015, 9(6): 339–350. doi: 10.1007/s11816-015-0370-7.