药用植物华重楼(黑药花科)叶绿体全基因组研究

李晓娟^{1,2},杨振艳¹,黄玉玲^{1,2},纪运恒^{1*}

(1. 中国科学院昆明植物研究所东亚植物多样性与生物地理学重点实验室,昆明 650201;2. 中国科学院大学,北京 100049)

摘要:为探究华重楼(Paris polyphylla var. chinensis)的叶绿体基因组特征,利用叶绿体系统发育基因组学方法,对华重楼与其它 百合目植物的叶绿体全基因组进行了比较。结果表明,华重楼的叶绿体全基因组长158307 bp,由4个区组成,包括2个反向重 复区(IRA和IRB, 27473 bp)、1个小单拷贝区(SSC, 18175 bp)和1个大单拷贝区(LSC, 85187 bp)。其叶绿体基因组有115个 基因,包括81个编码蛋白质基因、30个转运RNA基因和4个核糖体RNA基因。11种百合目植物的叶绿体全基因组的基因组 成和基因顺序相似。华重楼的 cemA基因是假基因,其起始密码子后有多聚核苷酸 poly(A)及CA双核苷酸重复序列,编码序列 中出现多个终止密码子,且与北重楼(Paris verticillata)的cemA编码序列中的终止密码子位置不同。因此,华重楼叶绿体基因 组比较保守; cemA结构及假基因化现象可能具有重要的进化与系统发育信息,其编码序列中的终止密码子可以区分华重楼和 北重楼。

关键词: 叶绿体全基因组;华重楼;黑药花科;百合目; cemA 假基因化 doi: 10.11926/j.issn.1005-3395.2015.06.001

Complete Chloroplast Genome of the Medicinal Plant *Paris polyphylla* **var.** *chinensis* (Melanthiaceae)

LI Xiao-juan^{1,2}, YANG Zhen-yan¹, HUANG Yu-ling^{1,2}, JI Yun-heng^{1*}

(1. Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: In order to understand the characters of chloroplast genome (cp genome) in *Paris polyphylla* var. *chinensis*, the chloroplast genome (cp genome) of *P. polyphylla* var. *chinensis* was compared with those of 10 species within Liliales by using phylogenomics methods based on complete chloroplast genomes. The results showed that the cp genome of *P. polyphylla* var. *chinensis* was 158307 bp in length and display a typical quadripartite structure including two inverted repeat regions (IRA and IRB, 27473 bp), one small single-copy region (SSC, 18175 bp) and one large single-copy region (LSC, 85187 bp). It contained 115 unique genes, including 81 protein-coding genes, 30 tRNAs and 4 rRNAs. The genome structure, gene contents and arrangement of 10 Liliales species cp genomes were very similar. The *cemA* gene of *P. polyphylla* var. *chinensis* was conservative. The *cemA* structure and pseudogenization might play an important role in the evolution and phylogeny, and the location of the stop codons in *cemA* was useful for distinguishing *P. polyphylla* var. *chinensis* from *P. veticillata*.

Key words: Complete chloroplast genome; *Paris polyphylla* var. *chinensis*; Melanthiaceae; Liliales; *cemA* pseudogenization

This work was supported by the National Natural Science Foundation of China (Grant No. 30670132).

Received: 2015–05–12 Accepted: 2015–05–27

^{*} Corresponding author. E-mail: jiyh@mail.kib.ac.cn

The chloroplast (cp) genome in plants is about 120-160 kp in size. Because of its small genome size and high copy numbers per cell, sequencing the complete cpDNA genome is much more amenable than the nuclear genome of plants^[1-3]. Besides with highly conserved gene content and order across plant species, cp genome DNA sequences were reported that it can provide useful information to elucidate phylogenetic relationships among plant taxa^{[4-5].} In addition, cp genome has a relatively lower intraspecific and higher interspecific divergence than nuclear genome, so that species identification can be confirmed easily depending on whether a gene exist in either of two species^[6–7]. At this time, the number of chloroplast genomes of green plants uploaded to NCBI (http://www.ncbi.nlm.nih.gov/genomes/ GenomesGroup.cgi?taxid=2759&opt=plastid#page-Top) has risen to 644, of which almost 496 angiosperms (including 139 monocots) have been available until March 4th, 2015.

Paris polyphylla var. *chinensis* (Franch.) Hara. is a perennial herb in the tribe Parideae of the family Melanthiaceae, which is widespread in subtropical China^[8–10]. The plant (named "Chonglou" in Chinese) is a traditional Chinese medicinal herb whose dried rhizome is the main source of raw material for some famous prepared Chinese medicines such as "Yunnan Baiyao" and "Gong xue ning Capsules", which are used as haemostatic, antalgic and antipyretic^[11–12]. More than 50 chemical compounds have been isolated and identified from *P. polyphylla* var. *chinensis* to date^[13–15]. Modern pharmacological research has demonstrated that steroid saponins (Diosgenin and Pennogenin glycosides) are responsible for these biological activities^[15–17].

Although *P. polyphylla* var. *chinensis* has a great economic and medicinal importance, no genomic work on the plant has yet been performed. Recently, three plastid genomes have been sequenced and confirmed in the Melanthiaceae family, including *Veratrum patulum* O. Loes^[18] (tribe Melanthieae), *Chionographis japonica* (Willd) Maxim^[19] (tribe Chionographideae) and its congener, *Paris verticillata* M. Bieb^[20]. The *trnI_CAU* triplication and *cemA* pseudogenization were found in the complete cp genomic sequence of *P. verticillata*^[20], which proposed a hypothesis that these patterns would be useful for understanding the phylogeny and evolution of these species by comparing the plastid genome features among Liliales. Here we reported the complete cp genome of *P. polyphylla* var. *chinensis*, and contrasted it with those of *P. veticillata* and other Liliales taxa. These data will be helpful to understand the phylogenetic relationships and evolutionary mechanism within Parideae clade (Melanthiaceae), and to provide useful molecular information for further research on this important medicinal plant.

1 Material and methods

1.1 Taxon sampling, cpDNA extraction and sequencing

In general, there are mainly three ways for obtaining cpDNA genome sequence: the first, cpDNA was isolated using low pH medium with high salt method^[21]; the second, amplifying cpDNA using short range PCR primers for Sanger DNA sequencing^[22-23]; the third, isolating total genomic DNA, constructing DNA library and sequencing utilizing next-generation sequencing^[24–25]. However, these ways need large sums of fresh leaves samples for sequencing and cpDNA sequence obtained may be with considerable gaps. To avoid these problems, we used the method proposed by Yang et $al^{[26]}$ to amplify the whole cp genome of *P*. polyphylla var. chinensis with nine universal primers. The healthy, actively growing fresh leaves were collected from P. polyphylla var. chinensis cultivated in the green house of Kunming Institute of Botany, Chinese Academy of Sciences. Total genome was extracted from about 100 mg of these clean, fresh leaves using CTAB method. The complete chloroplast genome of P. polyphylla var. chinensis was amplified by Takara PrimeSTAR GXL DNA polymerase and nine universal pairs of primers^[26]. Purified PCR products were mixed and then broken into 200-500 bp fragments and set paired-end libraries according to the manufacturer's manual (Illumina). The libraries were sequenced $(2 \times 100 \text{ bp})$ by Illumina Hiseq 2000.

1.2 Genome assembly

Before assembling short raw reads of P. polyphylla var. chinensis into contigs, sequence data were filtered using NGS QC Tool Kit^[27] for high quality (cut-off value for percentage of read length=80, cutoff value for PHRED quality score=30). Then the filtered reads were conducted to contigs with the de novo sequence assembly software, CLC Genomics Workbench^[28] V. 7 on Windows7 64bits server, and the word size was set to 64, while the minimum contig lengh was set to 1 kb. One cp genome which was highly similar to that of P. polyphylla var. chinensis was obtained after contigs were aligned using the Basic Local Alignment Search Tool (http://blast. ncbi.nlm.nih.gov/) with default parameters. We arranged the aligned contigs using the highly similar genome sequence identified in the BLAST search as references, and joined the contigs according the orders of contigs. At this time, contigs were assembled into a genome sequence with some gaps. In order to get one complete chloroplast genome, we also assembled reads into contigs using SOAPdenovo2^[29], on linux server, set the kmers to 81. We joined the contigs into another incomplete genome sequence following the same steps. Last, we aligned the two incomplete genome sequences and filled gaps. The complete chloroplast genome sequence of *P. polyphylla* var. chinensis was assembled.

1.3 Genome annotation, drawing and comparison

The *P. polyphylla* var. *chinensis* cpDNA genome was annotated using the program DOGMA (http:// phylocluster.biosci.utexas.edu/dogma/) and start and stop codons were adjusted using Geneious 7.0 software^[30]. The tRNA genes were identified and corrected by the tRNAscan-SE (http://selab.janelia. org/tRNAscan-SE/). The pseudogenes were defined in terms of terminal codons found in the middle of protein genes coding sequence^[31]. The gene introns were showed in gene annotation tables which

Geneious^[30] displayed. Then we used the annotated chloroplast genome genome file to draw gene map utilizing OrganellarGenomeDRAW (http://ogdraw. mpimpgolm.mpg.de/index.shtml). We compared the chloroplast genomic characteristic of *P. polyphylla* var. *chinense* with 47 species chosen from some orders of monocot plants included Liliales, Zingiberales, Poales, Arecales, Asparagales, Dioscoreales, Petrosaviales, Alismatales and Acorales, which data were downloaded from NCBI (Table 1). The 48 taxa genome sequences of *cemA* were aligned by MUSCLE in Geneious plugins, and the alignment result was corrected manually.

1.4 Sequence divergence and phylogenetic analysis

The 48 complete plastid sequences representing the nine orders of monocots (Table 1) were downloaded from NCBI Organelle Genome Resources database. We extracted 79 protein-coding genes (all protein genes except *ycf15* and *ycf68*) from 48 species sequences. The question marks were substituted for missing genes of some taxa, and missing genes sequence were aligned by MUSCEL, respectively. These alignment results were modified manually. Pairwise sequence divergences were calculated with Kimura's two parameter model using the software MEGA $6^{[32]}$.

Because the accD, ycf15, ycf68, ycf1, ycf2 are missing in some monocot lineages, we constructed the aligned matrix of 76 protein genes without those five genes using Phyutility.jar^[33], and used this matrix to reconstruct phylogenetic tree with GTR+I+G substitution model computed by Modeltest, which is included in the PUAP GUI 2011 program. The Markov chain Monte Carlo (MCMC) algorithm was run for 1000000 generations with trees sampled every 100 generations for each data partition. The first 25% of trees from all runs were discarded as burn-in, and the remaining trees were used to construct majorityrule consensus tree. We chose Acorus americanus (Raf.) Raf. and A. calamus L. as outgroups. The phylogenetic tree was conducted by FigTree V1.4 program.

Order Family Accession number Species Acorales Acoraceae Acorus americanus NC 010093 NC_007407 A. calamus NC_018541 Alismatales Hydrocharitaceae Elodea canadensis Najas flexilis NC_021936 NC_016753 Araceae Colocasia esculenta NC_015891 Spirodela polyrhiza DQ400350 Lemna minor NC_015899 Wolffia australiana Wolffiella lingulata NC 015894 Petrosaviales Petrosaviaceae Petrosavia stellaris NC 023356 Dioscoreales Dioscoreaceae Dioscorea elephantipes EF380353 KJ490011 D. rotundata Liliales NC 025333 Alstroemeriaceae Luzuriaga radicans Bomarea edulis KM233641 KC968976 Alstroemeria aurea Smilacaeae Smilax china HM536959 Liliacceae KC968977 Lilium longiflorum Fritillaria cirrhosa NC_024728 NC 024736 F. hupehensis Melanthiaceae NC 022715 Veratrum patulum Chionographis japonica KF951065 Paris verticillata KJ433485 NC 022926 Zingiberales Musaceae Musa textilis Heliconiaceae Heliconia collinsiana NC_020362 Strelitziaceae NC_022927 Ravenala madagascariensis Marantaceae KF601571 Maranta leuconeura Zingiberaceae NC_020363 Zingiber spectabile NC_022928 Curcuma roscoeana NC 026220 Poales Bromeliaceae Ananas comosus NC 013823 Typhaceae Typha latifolia Anomochloa marantoidea NC_014062 NC_023245 Pharus lappulaceus Poaceae Leersia tisserantii NC_016677 NC_024725 Yushania lebigata AM777385 Lolium perenne Bismarckia nobilis NC_020366 Arecales Arecaceae Phoenix dactylifera NC_013991 Cocos nucifera KF285453 Elaeis guineensis NC_017602 Calamus caryotoides JX088663 Orchidaceae Neottia nidus-avis NC 016471 Asparagales Dendrobium officinale KC771275 NC_017609 Phalaenopsis equestris NC 014056 Oncidium Cymbidium aloifolium NC_021429 KF728079 Amaryllidaceae Allium cepa KM233639 Asparagaceae Eustrephus latifolius

Table 1 Accession number of complete chloroplast genomes

2 Results

2.1 Genome features

The complete cp genome of *P. polyphylla* var. *chinensis* is 158307 base pairs (bp) in length, which exhibits a quadripartite structure, consisting of a pair of IRs (27473 bp) separated by the large single-copy region (LSC, 85187 bp) and small single-copy region (SSC, 18175 bp) (Fig. 1). The overall CG content is 62.8%. The GC content of the IRs, LSC and SSC regions are 41.7%, 35.5% and 31.4%, respectively.

The cp genome of P. polyphylla var. chinensis encodes 137 predicted functional genes, of which 115 are unique, including 81 protein-coding genes, 4 rRNAs, and 30 tRNAs (Table 2). Ten proteincoding, 8 tRNA and 4rRNA genes are duplicated in the IR regions, however, only a part of ycfl gene is duplicated in the junction between IRB and SSC regions. The LSC region includes 60 protein-coding and 21 tRNA genes, whereas the SSC region contains 12 protein-coding (including partial ycf1 gene) and 1 tRNA genes. There are 18 intron-containing genes (12 protein-coding and 6 tRNAs) within the cp genome of P. polyphylla var. chinensis. Among them, 9 proteincoding genes and 6 tRNAs contain one intron, and 3 protein-coding genes (clpP, ycf3, rps12) have two introns. The cemA, ycf15 and ycf68 are pseudogenes judging by the presence of several terminal codons in these coding genes regions. In the cemA gene sequence, ploy(A) (8 bp) sequence and a small single repeat (SSR) CA unit including 6 CA copies are found within the coding regions (Fig. 2).

2.2 Comparison with other cp genomes in Liliales

The basic cp genomic features of *P. polyphylla* var. *chinensis* and those of nine species from other families within the Liliales order were compared, including *P. verticillata, C. japonica* and *V. patulum* (Melanthiaceae), *Fritillaria hupehensis* P. K. Hsiao & K. C. Hsia.^[34] and *Lilium longiflorum* Thunb.^[35] (Liliaceae), *Smilax china* L.^[36] (Smilacaceae) and *Alstroemeria aurea* Graham.^[34] and *Bomarea edulis* (Tussac) Herb.^[37] (Alstroemeriaceae). The genome

size of P. polyphylla var. chinensis is the largest of the Liliales cp genome. This variation in sequence length is mainly attributed to the difference in the length of the LSC region (Table 3). The AT and CG content ratio of P. polyphylla var. chinensis (37.2% and 62.8%, respectively) are similar to those of other species within the Liliales. The gene content and arrangement are similar within the Liliales lineages, except that rps16 is deleted completely in C. $japonica^{[24]}$ but partially in V. patulum^[18], infA lost in A. aurea^[34] and S. china^[36], and *ycf15* was absent from A. $aurea^{[34]}$. The gene content and arrangement are similar within the Liliales lineage. The IRB/SSC boundary is the incomplete duplication of *ycf1* in all species examined, whereas the IRA/LSC junction expands to rps19 (P. polyphylla var. chinensis, L. longiflorum^[35] and A. aurea^[34]), full trnH GUG (V. patulum^[18], F. hupehensis^[34] and B. edulis^[37]), part of rpl22 (S. china^[36]) and part of rps3 (C. japonica^[19] and P. verticillata^[20]). The length of intergenic spacer between rpl23 and ycf2 which contains trnI-CAU are varied among Liliales taxa. P. polyphylla var. chinensis cpDNA genome has the longest IGS length (636 bp) among all Liliales species (Table 3).

2.3 Sequence divergence of protein genes

We calculated the average pairwise sequence distance of 79 protein-coding genes among 48 monocots taxa. The results showed that 36 genes (45.57%) have an average sequence distance more than 0.10. The fourteen most divergent genes (*ycf1*, *rbl16*, *matK*, *rbl22*, *clpP*, *rbl32*, *rps16*, *ndhA*, *ndhF*, *ccsA rps11*, *ndhD*, *accD*, *infA*) exhibits that the average distance is higher than 0.15. The highest average sequence distance is observed in *ycf1* (0.23), which is located at the IR/SSC boundary and shows a fast evolutionary trend in monocots. The seven most conserve gene (*psbE*, *psbF*, *rps7*, *rps12*, *ndhB*, *rbl2* and *psbL*) possess the average sequence distance less than 0.05 (Table 4).

2.4 Phylogenetic analysis

To identify the phylogenetic position of P. poly-

Fig. 1 Map of *Paris polyphylla* var. *chinensis* complete chloroplast genome. Transcribed counterclockwise are shown outside of outer circle, whereas transcribed clockwise are shown inside. Thick lines in outer circle indicate IR regions.

phylla var. *chinensis*, we carried out multiple sequence alignments by using 76 protein-coding genes in the cp genomes for 48 monocot taxa to generate a matrix of 85506 bp. Phylogenetic relationships in Melanthiaceae, Liliales, and other orders among monocots were reconstructed with MrBayes analysis (Fig. 3). The results indicated that Liliales is a monophyletic group [Bayesian posterior probabilities (BPP)=100%]. Within Liliales, Melanthiaceae is monophyletic (BPP=100%), which is sister to Smilacaceae (*S. china*) and Liliaceae (*L. longiflorum, F. cirrhosa, F. hupehensis*). Also, Alstroemeriaceae (*A. aurea*) is sister to Colchicaceae (*Cohchicum autrumnale, Gloriosa superba*). The genus *Paris* (BPP=100%) is monophyletic and sister to other taxa within Melanthiaceae.

Gene type	Genes							
Photosystem I	psaA, psaB, psaC, psaI, psaJ, ycf3 ^{**} , ycf4							
Photosystem II	psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ psbK, psbL, psbM, psbN, psbT, psbZ							
Cytochrome	$petA, petB^*, petD^*, petG, petL, petN$							
ATP synthase	$atpA$, $atpB$, $atpE$, $atpF^{*}$, $atpH$, $atpI$							
Rubisco	rbcL							
NADH dehydrogenase	$ndhA^{*}$, $ndhB^{*} \times 2$, $ndhC$, $ndhD$, $ndhE$, $ndhF$, $ndhG$, $ndhH$, $ndhI$, $ndhJ$, $ndhK$							
Ribosomal protein (large subunit)	rpl2 [*] × 2, rpl14, rpl16 [*] , rpl20, rpl22, rpl23 × 2, rpl32, rpl33, rpl36							
Riosomal protein (small subunit)	rps2, rps3, rps4, rps7×2, rps8, rps11, rps12 ^{**} ×2, rps14, rps15, rps16 [*] , rps18, rps19×2							
ATP-dependent protease	$clpP^{**}$							
Cytochrome c biogenesis	ccsA							
Membrane protein	cemA							
Maturase	matK							
Other protein gene	infA							
Proteins of unknown function	$ycf1 \times 2$, $ycf2 \times 2$, $ycf15 \times 2$, $ycf68 \times 2$							
Ribosomal RNAs	$rrn23 \times 2$, $rrn16 \times 2$, $rrn5 \times 2$, $rrn4.5 \times 2$							
Transfer RNAs	$trnA_UGC^* \times 2$, $trnH_GUG \times 2$, $trnR_ACG \times 2$, $trnI_GAU^* \times 2$, $trnI_CAU \times 2$, $trnC_GCA$, $trnL_CAU \times 2$, $trnC_GCAU \times 2$, $trnC_GU \to 2$, tr							
	$CAA \times 2$, $trnV_GAC \times 2$, $trnN_GUU \times 2$,							
	trnD_GUC, trnE_UUC, trnF_GAA, trnG_UCC [°] , trnG_UCC, trnK_UUU [°] , trnL_UAA [°] , trnV_UAC [°] ,							
	trnL_UAG, trnM_CAU, trnfM_CAU, trnP_UGG, trnQ_UUG, trnR_UCU, trnS_GCU, trnS_UGA,							
	trnS_GGA, trnT_GGU, trnT_UGU, trnW_CCA, trnY_GUA							
RNA polymerase	rpoA, rpoB, rpoC1 [*] , rpoC2							

Table 2 Gene contents of complete chloroplast genome of Paris polyphylla var. chinensis

 \times 2: Two gene copies in IR regions; *: With one intron; **: With two introns.

Δ	1			10					20					30					40						50
1. Luzuriaga radicans 2. Alstroemeria aurea 3. Bomarea edulis 4. Fritillaria cirrhosa 5. Fritillaria hupenhensis 6. Lilium longilforum 7. Smilax china 8. Veratrum patulum 9. Chionographis japonica 10. Paris polyphylla var. chinensis 11. P. verticillata	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	TGAA TGAA TGAA TAAA TGAA TGAA TGAA TGAA	A A A A A A	AAA AAA TGA AAA AAA AAA AAA AAA	AGA AGA AAAA GGA AAAA AAA AAA AAA AAA							AAA AAAA AAAA AAAAAA AAAAAAAAAAAAAAAAA	GCC GCC TCC GCC AC AC	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		ACCACCACCACCACCACCACCACCACCACCACCACCACC			P O O O O O O O O O O O O O O O O O O O	TTTTTTTTTTTT		CCCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	TA TA TA TA TA TA TA TA	TA TA TC TC TC TC TC TC TC TC TC	THTTTTTTTTTTT
B 1.Luzuriaga radicans 2.Alstroemeria aurea 3.Bomarea edulis 4.Fritillaria cirrhosa 5.Fritillaria hupenhensis 6.Lilium longilforum 7.Smilax china 8.Veratrum patulum 9.Chionographis japonica 10.Paris polyphylla var. chinensis 11.P. verticillata	l. M K K K K K K K K K K K K K K K K K K K	KKKKKKSKKKKK KKKKKKKKKKKKKKKKKKKKK	A A A K K L A T I H T	SSSSKLSST* D	10 PPPTLSPLFLLF	YYYSTLYYSSP	IIILSVLFLHI	AAAYPIFSYSH	ТНТТААТ	VVVVLFVVILY	LIINPLINYH	20 WWWFVWWPPVFF	WWWLFVWWLPL	VVVPLSVEPGV	HHHXX011X01	SSSVWFSFVLS	EEELSKNHIHI	KKKSLSKKSL*	0.000 E0100 ERE	EEEKNPEEKVS	PPPSK PPS G	LWWLSVWLLZH	VVVELIVVELL	NDDWPWNNGLY	*TARARASARS

Fig. 2 Alignment of partial cemA sequences among 11 species of Liliales. A: Partial nucleotide sequences of *cemA*, gray box show SSR (CA); B: Partial amino acid sequences of cemA, asterisks indicate the stop condon.

3 Discussions

3.1 cpDNA genome features

The gene contents and arrangement were similar among Liliales as previously reported. However, there

were some difference in genes loss, gene structure and pseudogenes in Liliales taxa, and some changes were typical among Liliales species. For instance, *rps16* was deleted completely in *C. japonica*^[19], but partially in *V. patulum*^[18]. The *infA* gene lost in *A. aurea*^[34]

	Paris polyphylla var. chinensis	Paris verticillata	Chionographia japonica	Veratrum patulum	Fritillaria hupehensis	
Family	Melanthiaceae	Melanthiaceae	Melanthiaceae	Melanthiaceae	Liliaceae	
Accession number		KJ433485	KF951065	KF437397	KF712486	
Protein-coding genes	81	81	80	81	81	
tRNAs	30	30	30	30	30	
rRNAs	4	4	4	4	4	
Length (bp)	158307	157379	154646	153699	152145	
LSC (bp)	85187	82726	81653	83372	81898	
SSC (bp)	18175	17907	18195	17607	17553	
IRs (bp)	27473	28373	27399	26360	26347	
AT content (%)	62.8	62.4	62.3	62.3	62.9	
GC content (%)	37.2	37.6	37.7	37.7	37.1	
IR/SSC junction	<i>ycf1</i> -like	<i>ycf1</i> -like	<i>ycf1</i> -like	<i>ycf1</i> -like	<i>ycf1</i> -like	
IR/LSC junction	rps19	rps3-like	rps3-like	trnH_GUG-rps19 IGS	trnH_GUG-rps19 IGS	
LSC GC content (%)	35.5	36	36	35.7	34.8	
SSC GC content (%)	31.4	31.1	31.4	31.4	30.5	
IR GC content (%)	41.7	42	42.5	42.9	42.5	
Length of IGS (<i>rpl23-ycf2</i>)(bp)	636	591	303	305	307	
	Lilium longiflorum	Smilax china	Alstroemeria aurea	Bomarea edulis		
Family	Liliaceae	Smilacaceae	Alstroemeriaceae	Alstroemeriaceae		
Accession number	KC968977	HM536959	KC968976	KM233641		
Protein-coding genes	81	81	79	80		
tRNAs	30	30	30	30		
rRNAs	4	4	4	4		
Length (bp)	152793	157878	155510	154925		
LSC (bp)	82230	84608	84241	84094		
SSC (bp)	17523	18536	17867	17699		
IRs (bp)	26520	27367	26701	26566		
AT content (%)	62.98	62.75	62.74	61.8		
GC content (%)	37.02	37.25	37.26	38.2		
IR/SSC junction	<i>ycf1</i> -like	<i>ycf1</i> -like	<i>ycf1</i> -like	<i>ycf1</i> -like		
IR/LSC junction	rps19-like	rpl22-like	rps19-like	trnH_GUG-rps19 IGS		
LSC GC content (%)	34.8	35.2	36.2	36.4		
SSC GC content (%)	30.8	31.4	31.8	32.2		
IR GC content (%)	42.4	42.4	40.3	40.3		
Length of IGS (<i>rpl23-ycf2</i>)(bp)	308	308	308	307		

Table 3 Characteristics of chloroplast genomes among Liliales

and *S. china*^[36], while it existed as a pseudogene in the *V. patulum*^[18], *B. edulis*^[37] and *L. longiflorum*^[35] because there were internal stop codons within the coding regions of this gene. The *accD* gene was pseudogene in *S. china*^[36], whereas it had function within other species of Liliales. The gene loss and pseudogenization could be unique evolutionary events

in those species.

Because of the presence of several stop codons, the *cemA* is pseudogene, and the gene is with poly(A)sequence and SSR of CA after the start codon in the cp genome of *P. polyphylla* var. *chinensis* as well as in *P. verticillata*^[25]. However, the locations of stop codons in *cemA* are different between the cp

Table 4 Sequence divergence of protein genes

No.	Gene	Mean sequence distance	Standard error	Region	No.	Gene	Mean sequence distance	Standard error	Region
1	ycf1	0.23203	0.01059	IR	41	rbL14	0.09637	0.01633	LSC
2	rbL16	0.19853	0.01499	LSC	42	rps18	0.09584	0.01786	LSC
3	matK	0.19165	0.01289	LSC	43	ndhk	0.09547	0.01171	LSC
4	rbL22	0.18773	0.02473	LSC	44	rbL36	0.09479	0.03008	LSC
5	clpP	0.18683	0.01317	LSC	45	rps14	0.09387	0.01794	LSC
6	rbL32	0.17464	0.03499	SSC	46	atpA	0.09227	0.00777	LSC
7	rps16	0.17059	0.01485	LSC	47	psbI	0.09194	0.03019	LSC
8	ndhA	0.16579	0.01091	SSC	48	rpoB	0.09089	0.00538	LSC
9	ndhF	0.16052	0.00926	IR	49	psaC	0.08658	0.01925	SSC
10	ccsA	0.15776	0.01411	SSC	50	rbcL	0.08635	0.00804	LSC
11	rps11	0.15721	0.02079	LSC	51	psaI	0.08381	0.02821	SSC
12	ndhD	0.15337	0.01239	SSC	52	atpB	0.08203	0.00839	LSC
13	accD	0.15177	0.01125	LSC	53	petA	0.08031	0.00945	LSC
14	infA	0.15029	0.02688	LSC	54	petL	0.08027	0.02954	LSC
15	rps15	0.14918	0.02454	SSC	55	psbJ	0.07322	0.02484	LSC
16	atpF	0.14464	0.01152	LSC	56	psbB	0.07098	0.00707	SSC
17	rbL33	0.13968	0.03189	LSC	57	petG	0.07021	0.02542	LSC
18	rbL20	0.13798	0.02018	LSC	58	psbC	0.06873	0.00708	SSC
19	rps3	0.13509	0.01494	LSC	59	atpI	0.06811	0.00964	LSC
20	rps8	0.13195	0.01904	LSC	60	<i>psbM</i>	0.06476	0.02546	LSC
21	rpoC2	0.13129	0.00581	LSC	61	psaA	0.06379	0.00562	LSC
22	ndhG	0.12583	0.01715	SSC	62	psaB	0.06371	0.00582	LSC
23	psbK	0.12471	0.02701	LSC	63	psbZ	0.06255	0.01791	LSC
24	cemA	0.12293	0.01419	LSC	64	psbT	0.06172	0.02421	LSC
25	rpoC1	0.11994	0.00721	LSC	65	ycf2	0.06102	0.00389	IR
26	rps19	0.11922	0.02117	IR	66	psbD	0.05992	0.00761	LSC
27	ndhC	0.11635	0.01944	LSC	67	petN	0.05889	0.02628	LSC
28	ycf3	0.11574	0.00823	LSC	68	atpH	0.05837	0.01541	LSC
29	rpoA	0.11552	0.01122	LSC	69	psbA	0.05813	0.00727	SSC
30	psaJ	0.11477	0.03141	SSC	70	psbN	0.05773	0.02098	LSC
31	atpE	0.11308	0.01693	LSC	71	psbE	0.04825	0.01389	LSC
32	ndhI	0.11087	0.01662	SSC	72	psbF	0.04687	0.01954	LSC
33	ndhH	0.10877	0.01139	SSC	73	rps7	0.04038	0.00857	IR
34	ndhE	0.10764	0.01999	SSC	74	rbL23	0.03338	0.00974	IR
35	petD	0.10743	0.01088	LSC	75	rps2	0.03274	0.01299	LSC
36	psbH	0.10627	0.02248	LSC	76	rps12	0.03245	0.00634	LSC and IR (mainly in IR)
37	ycf4	0.09992	0.01363	LSC	77	ndhB	0.03089	0.00366	IR
38	petB	0.09797	0.01103	LSC	78	rbl12	0.03061	0.00451	IR
39	ndhJ	0.09708	0.01525	LSC	79	psbL	0.03004	0.01515	LSC
40	rps4	0.09639	0.01278	LSC					

genomes of *P. polyphylla* var. *chinensis* and *P. verticillata* (Fig. 2), which can be used to distinguish *P. polyphylla* var. *chinensis* and *P. verticillata*. The *cemA* encoding product was found in the inner envelope membrane of chloroplasts^[38], which could be essential to CO_2 uptake in *Synechocystis*^[39]. The *cemA* gene was found disappeared in the cp genome

of two saprophytic monocots, e.g. *Neottia nidus-avi* (L.) Rich.^[40], and *Petrosavia stellaris* Becc.^[41], which could be interpreted by the dependence on the host plant. However, all species in the genus *Paris* are autotrophic, further research is needed to clarify the impact of *cemA* pseudogenization in the genus.

Gene duplication in the cp genome occurs mainly

Fig. 3 Mrbayes tree inferred from 76 protein coding genes from 48 taxa. Bayesian posterior probabilities (BPP) are shown on the right of branches. The box displays the family Melanthiaceae taxa.

within the IR regions because of the IR region expansion^[42] and most duplication genes were tRNAs^[43]. The triplication of trnI_CAU has been reported in the cp genome of P. verticillata^[20] but was not found in previously examined cp genomes of Melanthiaceae and other families in the Liliales, which was proposed to be unique to the tribe Parideae of Melanthiaceae. However, our data revealed that the triplication of trnI CAU does not occur in P. polyphylla var. chinensis. P. verticillata and P. polyphylla var. chinensis belong two different subgenera of Paris^[44]. Therefore, it is likely that the triplication of *trnI*_ CAU occurs only in the subgenus Paris rather than the subgenus Daiswa. This difference may provide information to explore the infrageneric relationships within the genus Paris.

3.2 Phylogenetic relationships

Chloroplast genomes provide rich sources of phylogenetic information to elucidate the evolutionary relationships among angiosperms^[4,45]. The order relationships among monocots and family relationships within Liliales defined in this study were identical to those delineations in previous studies^[10,46]. However, the generic relationships among the family Melanthiaceae have not been satisfactory resolved inferred from our data due to the limited taxa sampling. Paris is a temperate genus with 27 species distributed in the Eurasia^[8,44]. Previous phylogenetic studies employing one or several genes or DNA regions placed the genus in the family Melanthiaceae or the family Trilliaceae^[9-10,47]. Our phylogeny based on 76 chloroplast protein genes placed Paris in the family Melanthiaceae with 100% BBP, which well supports the treatments of APG III^[10], Fuse et al^[9], and Zomlefer et al^[47].

Acknowledgments We are very grateful to Dr. Hong-tao Li, Zheng-shan He, Li-e Yang, Cui-xian Peng, Jian-jun Jin of Kunming Institute of Botany for their help during processing our data. We thank Molecular Biology Experimental Center, Kunming Institute of Botany for experiments and materials.

References

- Li W M, Ruf S, Bock R. Constancy of organellar genome copy numbers during leaf development and senescence in higher plants
 [J]. Mol Genet Genom, 2006, 275(2): 185–192. doi: 10.1007/ s00438-005-0075-7
- [2] Mcneal J R, Leebens-Mack J H, Arumuganathan K, et al. Using partial genomic fosmid libraries for sequencing complete organellar genomes [J]. Biotechniques, 2006, 41(1): 69–73.
- [3] Wakasugi T, Tsudzuki T, Sugiura M. The genomics of land plant chloroplasts: Gene content and alteration of genomic information by RNA editing [J]. Photosynth Res, 2001, 70(1): 107–118. doi: 10.1023/A:1013892009589
- [4] Jansen R K, Cai Z Q, Raubeson L A, et al. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns [J]. Proc Natl Acad Sci USA, 2007, 104(49): 19369–19374. doi: 10.1073/ pnas.0709121104
- [5] Odintsova M S, Yurina N P. Chloroplast genomics of land plants and algae [M]// Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors and Biodevices. US: Springer, 2006: 57–72. doi: 10.1007/978-0-387-36672-2_6
- [6] Luo H W, Sun Z Y, Arndt W, et al. Gene order phylogeny and the evolution of methanogens [J]. PLoS One, 2009, 4(6): e6069. doi: 10.1371/journal.pone.0006069
- [7] Li X W, Yang Y, Henry R J, et al. Plant DNA barcoding: From gene to genome [J]. Biol Rev, 2014, 90(1): 157–166. doi: 10.1111/ brv.12104
- [8] Li H. The Genus *Paris* (Trilliaceae) [M]. Beijing: Science Press, 1998: 37–194.
- [9] Fuse S, Tamura M N. A phylogenetic analysis of the plastid *matK* gene with emphasis on Melanthiaceae *sensu lato* [J]. Plant Biol, 2000, 2(4): 415–427. doi: 10.1055/s-2000-5953
- [10] Bremer B, Bremer K, Chase M, et al. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III [J]. Bot J Linn Soc, 2009, 161(2): 105–121. doi: 10.1111/j.1095-8339.2009.00996.x
- [11] Long C L, Li H, Ouyang Z Q, et al. Strategies for agrobiodiversity conservation and promotion: A case from Yunnan, China
 [J]. Biodiv Conserv, 2003, 12(6): 1145–1156. doi: 10.1023/ A:1023085922265
- [12] Zhang T, Liu H, Liu X T, et al. Qualitative and quantitative analysis of steroidal saponins in crude extracts from *Paris polyphylla* var. *yunnanensis* and *P. polyphylla* var. *chinensis* by high performance liquid chromatography coupled with mass spectrometry [J]. J Pharmaceut Biomed Anal, 2010, 51(1): 114– 124. doi: 10.1016/j.jpba.2009.08.020
- [13] Kang L P, Liu Y X, Eichhorn T, et al. Polyhydroxylated steroidal

glycosides from *Paris polyphylla* [J]. J Nat Prod, 2012, 75(6): 1201–1205. doi: 10.1021/np300045g

- Kang L P, Yu K, Zhao Y, et al. Characterization of steroidal glycosides from the extract of *Paris polyphylla* var. *yunnanensis* by UPLC/Q-TOF MSE [J]. J Pharmac Biomed Anal, 2012, 62: 235–249. doi: 10.1016/j.jpba.2011.12.027
- [15] Mimaki Y, Kuroda M, Obata Y, et al. Steroidal saponins from the rhizomes of *Paris polyphylla* var. chinensis and their cytotoxic activity on HL-60 cells [J]. Nat Prod Lett, 2000, 14(5): 357–364. doi: 10.1080/10575630008043768
- [16] Li Y, Gu J F, Zou X, et al. The anti-lung cancer activities of steroidal saponins of *P. polyphylla* Smith var. *chinensis* (Franch.) Hara through enhanced immunostimulation in experimental Lewis tumor-bearing C57BL/6 mice and induction of apoptosis in the A549 cell line [J]. Molecules, 2013, 18(10): 12916–12936.
- [17] Wang G X, Han J, Zhao L W, et al. Anthelmintic activity of steroidal saponins from *Paris polyphylla* [J]. Phytomedicine, 2010, 17(14): 1102–1105. doi: 10.1016/j.phymed.2010.04.012
- [18] Do H D K, Kim J S, Kim J H. Comparative genomics of four Liliales families inferred from the complete chloroplast genome sequence of *Veratrum patulum* O. Loes. (Melanthiaceae) [J]. Gene, 2013, 530(2): 229–235. doi: 10.1016/j.gene.2013.07.100
- Bodin S S, Kim J S, Kim J H. Complete chloroplast genome of *Chionographis japonica* (Willd.) Maxim. (Melanthiaceae): Comparative genomics and evaluation of universal primers for Liliales [J]. Plant Mol Biol Rep, 2013, 31(6): 1407–1421. doi: 10.1007/s11105-013-0616-x
- [20] Do H D K, Kim J S, Kim J H. A *trnI_CAU* triplication event in the complete chloroplast genome of *Paris verticillata* M. Bieb. (Melanthiaceae, Liliales) [J]. Genome Biol Evol, 2014, 6(7): 1699–1706. doi: 10.1093/gbe/evu138
- Shi C, Hu N, Huang H, et al. An improved chloroplast DNA extraction procedure for whole plastid genome sequencing
 [J]. PLoS ONE, 2012, 7(2): e31468. doi: 10.1371/journal. pone.0031468
- [22] Dong W P, Xu C, Cheng T, et al. Sequencing angiosperm plastid genomes made easy: A complete set of universal primers and a case study on the phylogeny of Saxifragales [J]. Genome Biol Evol, 2013, 5(5): 989–997.
- [23] Haider N. Chloroplast-specific universal primers and their uses in plant studies [J]. Biol Plant, 2011, 55(2): 225–236. doi: 10.1007/s10535-011-0033-7
- [24] Stull G W, Moore M J, Mandala V S, et al. A targeted enrichment strategy for massively parallel sequencing of angiosperm plastid genomes [J]. Appl Plant Sci, 2013, 1(2). doi: 10.3732/apps. 1200497.
- [25] Atherton R A, Mccomish B J, Shepherd L D, et al. Whole genome sequencing of enriched chloroplast DNA using the

Illumina GAII platform [J]. Plant Methods, 2010, 6: 22. doi:10.1186/1746-4811-6-22.

- [26] Yang J B, Li D Z, Li H T. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs [J]. Mol Ecol Resour, 2014, 14(5): 1024–1031. doi: 10.1111/1755-0998.12251
- [27] Patel R K, Jain M. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data [J]. PLoS ONE, 2012, 7(2): e30619. doi: 10.1371/journal.pone.0030619
- [28] Matvienko M. CLC Genomics Workbench [CP]. Aarhus: CLC bio, A QIAGEN Company, 2005.
- [29] Luo R B, Liu B H, Xie Y L, et al. SOAPdenovo2: An empirically improved memory-efficient short-read *de novo* assembler [J]. GigaScience, 2012, 1: 18. doi:10.1186/2047-217X-1-18
- [30] Kearse M, Moir R, Wilson A, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data [J]. Bioinformatics, 2012, 28(12): 1647–1649. doi: 10.1093/bioinformatics/bts199
- [31] Echols N, Harrison P, Balasubramanian S, et al. Comprehensive analysis of amino acid and nucleotide composition in eukaryotic genomes, comparing genes and pseudogenes [J]. Nucl Acid Res, 2002, 30(11): 2515–2523.
- [32] Tamura K, Stecher G, Peterson D, et al. MEGA6: Molecular evolutionary genetics analysis, Version 6.0 [J]. Mol Biol Evol, 2013, 30(12): 2725–2729. doi: 10.1093/molbev/mst197
- [33] Smith S A, Dunn C W. Phyutility: A phyloinformatics tool for trees, alignments and molecular data [J]. Bioinformatics, 2008, 24(5): 715–716. doi: 10.1093/bioinformatics/btm619
- [34] Li Q S, Li Y, Song J Y, et al. High-accuracy *de novo* assembly and SNP detection of chloroplast genomes using a SMRT circular consensus sequencing strategy [J]. New Phytol, 2014, 204(4): 1041–1049. doi: 10.1111/nph.12966
- [35] Kim J S, Kim J H. Comparative genome analysis and phylogenetic relationship of order Liliales insight from the complete plastid genome sequences of two lilies (*Lilium longiflorum* and *Alstroemeria aurea*) [J]. PLoS ONE, 2013, 8(6): e68180. doi: 10.1371/journal.pone.0068180
- [36] Liu J, Qi Z C, Zhao Y P, et al. Complete cpDNA genome sequence of *Smilax china* and phylogenetic placement of Liliales-Influences of gene partitions and taxon sampling [J]. Mol Phylogenet Evol, 2012, 64(3): 545–562. doi: 10.1016/j.ympev.2012.05.010
- [37] Kim J S, Kim H T, Yoon C Y, et al. The complete plastid genome sequence of *Bomarea edulis* (Alstroemeriaceae: Liliales) [J/OL]. Mitochondrial DNA, 2014. doi: 10.3109/19401736.2014.971264.
- [38] Willey D L, Gray J C. An open reading frame encoding a putative haem-binding polypeptide is contranscribed with the pea chloroplast gene for apocytochrome f [J]. Plant Mol Biol,

1990, 15(2): 347-356. doi: 10.1007/BF00036920

- [39] Katoh A, Lee K S, Fukuzawa H, et al. *cemA* homologue essential to CO₂ transport in the cyanobacterium *Synechocystis* PCC6803
 [J]. Proc Natl Acad Sci USA, 1996, 93(9): 4006–4010.
- [40] Logacheva M D, Schelkunov M I, Penin A A. Sequencing and analysis of plastid genome in mycoheterotrophic orchid *Neottia nidus-avis* [J]. Genome Biol Evol, 2011, 3: 1296–1303. doi: 10.1093/gbe/evr102
- [41] Logacheva M D, Schelkunov M I, Nuraliev M S, et al. The plastid genome of mycoheterotrophic monocot *Petrosavia stellaris* exhibits both gene losses and multiple rearrangements
 [J]. Genome Biol Evol, 2014, 6(1): 238–246. doi: 10.1093/gbe/evu001
- [42] Goulding S E, Wolfe K H, Olmstead R G, et al. Ebb and flow of the chloroplast inverted repeat [J]. Mol Gen Genet, 1996, 252(1/2): 195–206.
- [43] Lin C P, Wu C S, Huang Y Y, et al. The complete chloroplast genome of *Ginkgo biloba* reveals the mechanism of inverted

repeat contraction [J]. Genome Biol Evol, 2012, 4(3): 374–381. doi: 10.1093/gbe/evs021

- [44] Ji Y H, Fritsch P W, Li H, et al. Phylogeny and classification of Paris (Melanthiaceae) inferred from DNA sequence data [J]. Ann Bot, 2006, 98(1): 245–256. doi: 10.1093/aob/mcl095
- [45] Moore M J, Soltis P S, Bell C D, et al. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots [J]. Proc Natl Acad Sci USA, 2010, 107(10): 4623– 4628. doi: 10.1073/pnas.0907801107
- [46] Li X X, Zhou Z K. The higher-level phylogeny of monocots based on *matK*, *rbcL* and 18S rDNA sequences [J]. Acta Phytotaxon Sin, 2007, 45(2): 113–133.
- [47] Zomlefer W B, Williams N H, Whitten W M, et al. Generic circumscription and relationships in the tribe *Melanthieae* (Liliales, Melanthiaceae), with emphasis on *Zigadenus*: Evidence from ITS and *trn*L-F sequence data [J]. Amer J Bot, 2001, 88(9): 1657–1669. doi: 10.2307/3558411.