高温对生长在加富CO。条件下水稻离体叶片叶绿素荧光的影响

彭长连, 林植芳, 林桂珠

(中国科学院华南视物研究所,广东 广州 510650)

摘要: 4 个水稻品种 IR72、柱朝 2 号、特三矮 2 号和 II 优 4480 栽种于两种 CO₂ 浓度(350 μl L¹)、600 μl L¹) 下,将其离体叶片经不同温度(30、35、40、45、50 ℃) 处理 30 min 后,其细胞膜渗漏率 随处理温度的升高而上升,IR72 和柱朝 2 号在 40-45 ℃之间有一个急剧上升的折点,而特三矮 2 号和 II 优 4480 的折点则在 45-50 ℃之间。 Fv/Fm、Fv/Fo、Φ PSII 和 qP 随处理温度的升高而下降, qN 则先升后降。 特三矮 2 号和 II 优 4480 的这些荧光参数随温度的变化较 IR72 和柱朝 2 号相对平级些。结果表明特三楼 2 号和 II 优 4480 比 IR72 和柱朝 2 号有较强的抗高温能力。 生长在高 CO₂ 浓度下的水稻,叶片经高温处理后。其细胞膜渗漏率大于生长在对照空气中的叶片,但两者的叶绿素荧光参数则没有明显差别。

关键词: 水稻; 加富 CO; 高温; 细胞膜渗漏率; 叶绿素荧光参数

中图分类号: Q945.11

文献标识码: A

文章编号: 1005-3395(2000)02-0091-06

EFFECT OF HIGH TEMPERATURES ON CHLOROPHYLL FLUORESCENCE OF DETACHED LEAVES OF RICE GROWING UNDER CO. ENRICHMENT

PENG Chang-lian, LIN Zhi-fang, LIN Gui-zhu

(South China Institute of Botany, the Chinese Academy of Sciences, Guangzhou 510650, China)

Abstract: When detached leaves of four rice cultivars, IR72, Guichao 2, Tesanai 2 and II You 4480, growing under 350 µl L⁻¹ (ambient) and 600 µl L⁻¹ (enrichment) CO₂ concentrations, were treated by different temperatures (30, 35, 40, 45, 50°C) for 30 min. Results showed that the cell membrane leakage increased with increasing temperature. There was a breakpoint with significant rise in 40-45°C treatments in IR 72 and Guichao 2, whereas that in Tesanai 2 and II You 4480 were between 45-50°C. With increasing temperature, Fv/Fm, Fv/Fo, ФРSП and qP decreased but qN increased at first, then decreased. All of these fluorescence Parameters in Tesanai 2 and II You 4480 varied less significantly than those in IR 72 and Guichao 2, indicating that Tesanai 2 and II You 4480 can tolerate higher temperature than IR 72 and Guichao 2. After treatments with different temperatures, the cell membrane leakage of detached leaves of rice growing under CO₂ enrichment showed higher values than those growing under ambient CO₂ concentration. However no obvious difference

收稿日期: 2000-03-01

基金项目: 广水省自然科学基金项目 (970653); 国家重点基础研究发展规划项目 (G1998010100)

in fluorescence parameters was found between the two concentrations of CO₂. **Key words:** Rice; CO₂ enrichment; High temperature; Cell membrane leakage; Fluorescence parameters

目前大气 CO_2 浓度(350 μ i L¹) 是过去 200 000 年以来的最高值^[1],预计到下世纪中期将超过 600 μ l L¹。 大气 CO_2 浓度的剧增以及其它温室气体(如 CH_4 , N_2O , CFC_8) 的增加将对全球气候变迁产生巨大的影响。 其中,地球表面温度的上升就是其重要影响的表现之一。 大多数全球性的气候模型(Global Climate Models, GCMs) 预测大气 CO_2 浓度增加一倍,则地球表面温度将升高 3-5 C [2]。

水稻作为主要的粮食作物之一,在世界各地广泛分布。 从北纬 45°至南纬 40°,从低海拔到海拔高达 2500 m以上的地区都种植水稻。已有报道指出,增加 CO2 浓度可以增强水稻叶片的光合作用。提高水稻籽粒产量⁽³⁾,但不同品种的水稻生物量和产量对高 CO2 的响应不同,个别热带梗稻品种显示较为显著的增产效应,而有些品种则增产效应不显著⁽⁴⁾。 温度是影响水稻生长和产量的主要因素之一,在温度为 18-33 ℃之间,其生物量和分孽数随温度的升高而增加⁽⁵⁾,但在水稻的生殖生长期, 超过 35 ℃就会导致大部分小穗不育⁽⁵⁾。

目前,有关水稻对高浓度 CO₂的响应以及温度对水稻的影响都有大量报道,但高 CO₂和高温的交互作用对水稻影响的研究仍不多。显然,研究温度和高浓度 CO₂的交互作用对水稻作用的机理是了解未来气候变迁对水稻产量影响的关键,也是筛选适宜生长于高浓度 CO₂及其伴随的气温升高下的水稻优良种质的理论依据。本文用不同温度处理生长在加富 CO₂下的水稻离体叶片,通过叶绿素荧光技术探讨温度对高浓度 CO₂下生长的水稻光合作用影响的机理。

1 材料和方法

供试材料 实验材料由广东省农业科学院水稻研究所提供的广东常见的栽培稻($Oryza\ sativa\ L.\ subsp.\ indica)$ 3 个晶种: 柱朝 2 号($Guichao\ 2$)、特三矮 2 号($Tesanai\ 2$)、II 优 4480 (II You 4480) (籼× 籼,杂交稻)和非律宾国际水稻研究所 $IR\ 72$ (籼稻)。 1997 年初播种,随后将秧苗移植于水稻试验田控制 CO_2 浓度的塑料大棚中。大棚以制管作支架,高 1.5 m,宽 3.0 m,长 15 m。 覆以高透光性的聚酯薄膜(透光率为 80%)。 棚的两端各装一台进气或排气风扇,棚内装有温度和 CO_2 传感器。 联接于室内的中央计算机和 CO_2 红外分析仪。 对照棚内通入含 CO_2 350 μI L^1 的空气,高浓度 CO_2 处理棚的空气含 $CO_2\ 600$ μI L^4 ,由钢瓶 CO_2 供气配制。 计算机 24 h 监控和调节 CO_2 浓度,分别为 600 ± 6 μI L^4 ,350 ± 3 μI L^4 ,并通过控制风扇的转速来调节 CO_2 的均匀分布和棚内的温度(棚内外的温度在中午时相点最大约为 1-2 C)。 整套设备由澳大利亚国立大学生命科学院提供并负责安装调试。 中等水平水肥管理, 定期观察喷药防治病虫害, 栽种的株行距 20.0 cm× 13.5 cm。 抽穗前取到叶作供试材料, 每个晶种随机取6株。

温度处理 每种水稻取剑叶叶圆片(0.95 cm²)20 片加 5 ml蒸馏水,分别置于30、35、40、45、50 C五种温度的水浴中处理 0.5 h,测定叶绿素荧光和组织浸出液的电导率。

叶绿素荧光测定 按Schreiber^约方法,用脉冲调制变光仪(Pulse modulation fluorometer,

PAM, Walz, Germany) 測定叶片叶绿素荧光诱导曲线。 原初荧光 Fo 是用暗适应的叶片在羽调制测量光 $(0.05~\mu mol~photos~m^2s^4)$ 下诱导产生的, 最大荧光 Fm 则是在 Fo 之后用强饱和脉冲 $(5000~\mu mol~photos~m^2s^4)$ 激发、光化光为 $300~\mu mol~photos~m^2s^4$,测定之前叶片暗适应 10~min。

细胞膜的渗漏率的测定 以叶圆片浸泡 3 h 的浸出液在煮沸前后的电导度相对 % 表示。用 DDA-11 型电导仪测定电导度。

2 实验结果

2.1 不同温度处理对水稻叶片细胞膜渗漏率的影响

所有供试水稻品种叶片的细胞膜渗透率随处理温度的升高而增大(图 1),其中 IR 72 和桂朝 2 号在 40-45 C之间的增幅最大(图 1A、B)显示此温度下细胞膜开始出现损伤,引起细胞溶质的明显外渗;而特三矮 2 号和 II 优 4480 的膜渗漏率急剧上升折点则在 45-50 C 之间(图1C、D)。在所有实验处理的温度下,生长在高 CO_2 下的水稻叶片的细胞膜渗漏率都较生长在对照空气 CO_2 下的高。结果表明:特三矮 2 号和 II 优 4480 比 IR 72 和桂朝 2 号有较高耐受高温的能力;生长在高浓度 CO_2 条件下,水稻耐受高温的能力并未相应地增强,反之略低于对照。

2.2 不同温度处理对水稻叶片 Fv/Fm, Fv/Fo 和 Φ PSH 的影响

水稻叶片 PSII 原初光化学效率 (Fv/Fm) 随处理温度的升高而下降 (图 2)。 IR 72 和桂朝 2 号的 Fv/Fm 逐渐下降 (图 2A、B), 而生长在不同浓度 CO_2 下水稻的 Fv/Fm 变化对处理温度的 响应基本一致。 特三矮 2 号和 II 优 4480 的 Fv/Fm 在 30-40 ℃之间的变化不明显。 温度超过 40 ℃则迅速下降,而且在 40-50 ℃之间,生长在高浓度 CO_2 下的 Fv/Fm 的下降幅度比生长在 对照空气中的大(图 2C、D)。

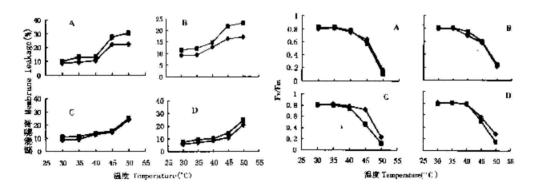


图 1 高温对不同 CO₂ 浓度处理生长的水稻叶片膜渗漏率的影响 Fig. 1 Effect of high temperature on cell leakage of rice leaves growing at different CO₂ concentrations

图 2 高温对生长于两种 CO₂ 浓度的水稻 Fv/Fm 的影响 Fig. 2 Effect of high temperature on Fv/Fm of rice leaves growing at two CO₂ concentration

A: IR 72, B: 桂朝 2 号(Guichao 2); C: 特点矮 2 号(Tesanai 2); D: ll (1) 4480 (Il You 4480);

Ambient CO₂ (350 μ1 L³);
Enriched CO₂ (600 μ) L³). 国 2-6 回 (Figs. 2-6 are the same as in Fig. 1)

PSII 的潜在活性(Fv/Fo) 对温度变化的响应趋势与 Fv/Fm 一致(图 3), IR 72 和桂朝 2 号较特三矮 2 号、II 优 4480 对高温更为敏感, 当温度超过 35 ℃时 Fv/Fo 呈直线下降(图 3A、B),而特三矮 2 号和 II 优 4480 的 Fv/Fm 在 30-40 ℃ 之间变化不明显, 40 ℃ 以后则明显直线下降(图 3C、D)。

Φ PSII 表示通过 PSII 非环式电子流的量子效率,其随温度升高而下降的趋势和 Fv/Fm, Fv/Fo 一致 (图 4)。 50 ℃ 处理 30 min 后 4 个水稍晶种已完全丧失非环式电子传递的能力。 然而,从 Φ PSII 的变化曲线同样看出 IR 72 和桂朝 2 号对 40 ℃ 以上的高温较特三 矮 2 号和 II 优 4480 的 敏感。 同时经 30-40 ℃ 处理的生长在高浓度 CO_2 下的特三矮 2 号和 II 优 4480 叶片的 Φ PSII 低于生长在对照空气中的叶片,而在此温度处理的 IR 72 和桂朝 2 号的 Φ PSII 在两种 CO_2 浓度下差别不明显。

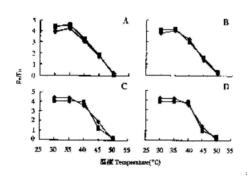


图 3 高温对生长于两种 CO₂ 浓度下的水桶叶片 Fv/Fo 的影响 Fig. 3 Effect of high temperature on Fv/Fo of rice leaves growing at two CO₂ concentrations

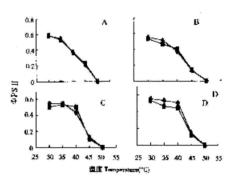


図4 高温处理的水稍离体叶片 ΦPSII 的变化 Fig. 4 Changes in ΦPSII of detached rice keaves treated by high temperature

2.3 不同温度处理对水稻叶绿素荧光猝灭的影响

应用调制荧光技术可以区分叶绿素荧光光化学猝灭(qP)和非光化学猝灭(qN)。 随处理温度的升高所有供试水稻叶片的 qP 都下降(图 5), qN 则先上升(30-45 °C), 然后急剧下降(30-45 °C)(图 6)。 不同 CO₂浓度下生长的水稻,其叶片的 qP 和 qN 对温度响应的差别不明显。 IR 72 和桂朝 2 号的 qP 随温度的上升而持续下降,但特三矮 2 号和 II 优 4480 在 40 °C 之前的 qP 值变化不大。45 °C 到 50 °C 则迅速降低。 50 °C 时供试的 4 个品种的 qP 和 qN 皆低至零,表明 PSII 已受到严重的破坏,反应中心关闭,对热能的耗散能力也丧失殆尽。

3 讨论

水稻是我国最重要的粮食作物之一、如何选育优质、高产和高抗性的水稻品种是我国农业生产所需解决的重大问题之一。面对全球性 CO。浓度的升高和随之而来的气候变暖趋势、对水稻的栽培、新品种培育和引种皆需考虑能同时适应于较高的 CO。浓度和温度等因素。 本文的实验结果表明 40-45 ℃ 是水稻细胞膜完整性和 PSII 活性变化的阀值。 温度低于 45 ℃的情况下,qN 有所提高,说明叶片仍具提高热耗散的调节能力,但 50 ℃ 高温则引起膜系统严重渗漏和

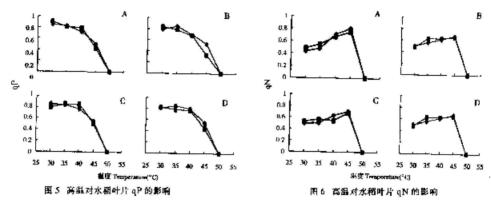


Fig. 5 Effect of high temperature on qP in rice leaves

Fig. 6 Effect of high temperature on qN in rice leaves

PSII 功能的丧失。 特三矮 2 号和杂交水稻 II 优 4480 在小于 40 ℃的高温下,其细胞膜的稳定性明显较 IR 72 和柱朝 2 号好(图 1),显示比后者有较强的抗高温能力。 张旭等^则应用人工气候新研究不同品种或组合的水稻幼苗耐冷性的结果表明。 三系杂交稻比常规品种有较强的抗性,而在常规品种中特三矮 2 号又较其他常规品种显示较强的抗冷性。 这种抗冷能力的强弱趋势与本文中品种间抗高温的趋势一致。 特三矮 2 号和 II 优 4480 在 30-40 ℃ 之间,其 Fv/Fm、 ΦPSII、Fv/Fo 和 qP 下降的幅度都较 IR 72 和柱朝 2 号小(图 2-6),说明在此温度下其 PSII 的结构与功能的稳定性高于 IR 72 和柱朝 2 号。 高等植物和藻类的 PSII 是高温处理时最敏感最易受到破坏的部位^图。 在高温处理下特三矮 2 号和杂交水稻 II 优 4480 的 PSII 相对稳定可能是其抗高温能力较强的原因之一。

在提高外界环境 CO₂ 浓度下生长的水稻,经高温处理后其细胞膜渗漏率反而比对照大气 CO₂ 浓度下生长的水稻要大,叶绿素炭光参数 Fv/Fm、ΦPSII、Fv/Fo、qN 和 qP 则没有明显的差异。此结果与 Manalo¹⁰⁹ 报道的高浓度 CO₂ 可以抵消高温对水稻的负作用不同,其原因可能由于我们的实验中,高温处理是用离体叶片的短期处理,并不是在生长期间结合高温处理,因而植株对提高温度未形成相应的驯化特性;另一方面,我们也观察到长期生活在高 CO₂ 浓度下的水稻叶片抗氧化能力下降^[11],故一旦将其进行高温逆境处理,则比对照大气下生长的水稻更易受伤害。水稻生育期中较高的 CO₂ 浓度并没有明显改变叶片的叶绿素炭光参数^[13],因而高温处理不同 CO₂ 浓度下生长的水稻叶片后,其 PSII 光化学效率和叶绿素荧光猝灭特性等也不农现显著的差别。

综观本文结果,不同水稻品种对高温的响应有一定的差异,三系杂交稻 II 优 4480 的抗高温能力大于常规稻。而常规稻中抗逆性强、适应性广的特三矮 2 号也显示出较强的抗高温能力。提高外界生长环境的 CO₂ 浓度对叶片耐受短期的高温处理没有积极的作用。反而有些负效应,但对 PSII 光化学效率则没有明显的影响。

参考文献

[I] Sage R F. Was low atmospheric CO, during the Pleistocene a fimiting factor for the origin of agriculture? [J] Global Change Biol, 1995(1):1-106.

- [2] Bolin B, Does B, Jacque J. The greenhouse effect [A]. In: Bolin B, Jacque J. Climate Change and Ecosystems [C]. John wiley and Sons. New York, 1986, 1-29.
- [3] Wittwer S H. Food, Climate and Carbon Dioxide: The Global Environment and World Food Production [M]. Lewis Publishers. Boca Raton, New York: CRC Press, 1995, 59.
- [4] Ziska L H, Teramura A H. Intraspecific variation in the response of rice (Orpica sativa) to increased CO₂-photosynthetic, biomass and reproductive characteristics [J]. Physiol Plant, 1992, 84:269-276
- [5] Nishiyama I. Effect of temperature on the vegetative growth of rice plants [A]. In: Climate and Rice [M]. International Rice Research Institute, Los Banos. Philippines, 1976, 159-185.
- [6] Yoshida S. Fundamentals of Rice Crop Sciences [M]. International Rice Research Institute. Los Banos, Philippines, 1981.
- [7] Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and nonphotochemical enforophyll fluorescence quenching with a new type of modulation fluorometer [J]. Photosyn Res, 1986, 10:51-62.
- [8] 张旭、黄衣荣、邱润恒、等、 高产水稻幼苗副冷性 [J] 热带亚热带植物学报、 1999、增刊 II:8-14.
- [9] Yoshihiro Y, Yasuhiro K, Hiroyuki K, et al. Effects of high temperatures on the photosynthetic systems in Spinach: Oxygen-evolving activities, fluorescence characteristics and the denaturation process [J]. Photosyn Res, 1998, 57:51-59.
- [10] Manalo P A, Ingram K T, Pamploma R R, et al. Atmospheric CO₃ and temperature effects on development and growth of rice [J]. Agric Ecos Envir, 1994, 51:339-347.
- [11] 彭长连, 林拉芳, 林佳珠. 加富 CO₂条件下水桶叶片抗氧化能力的变化 [4]. 作物学报, 1999, 25(1):37-43.
- [12] 彭长连、林桢芳、孙梓健、等、 水箱光合作用对加富 CO₂ 的响应 [7]. 植物生理学根、 1998, 24(3):272-278.

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.