基于卷积神经网络的尾巨桉混交林胸径-树高模型
作者:
基金项目:

广西科技基地和人才专项(桂科AD20325008);中央财政林业科技推广示范项目(2021TG18);广西林业科技推广示范项目(2021TG15)资助


Breast Diameter-height Models of Eucalyptus urophylla×E. grandis Mixed Plantations Based on Convolutional Neural Network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    运用卷积神经网络(CNN)对尾巨桉(Eucalyptus urophylla×E. grandis)中大径材混交林的树高进行预测,为森林资源监测和评价提供理论依据。该研究以南宁桉树野外站24块尾巨桉大径材套种米老排(Mytilaria laosensis)、红锥(Castanopsishystrix)、灰木莲(Manglietia glauca)、火力楠(Michelia macclure)形成的混交林为研究对象,结合林分优势高分树种(组),运用样本信息与卷积神经网络先验信息统计推断,经过训练得到各树种(组)适宜模型结构。使用基本一致的建模数据求解传统的树高方程,未参与建模样地作为验证集对比分析基于非线性模型或非线性混合效应6种经典模型和3种基于激活函数的CNN模型方法进行验证。结果表明,Näslund、Curtis、Logistic、Weibull、Gomperz、Korf传统模型和L-M模型(模型I)均方根误差(RMSE)为2.5~5.6;ReLU激活函数卷积神经网络模型(模型II)的RMSE=2.304 2,R2=0.814 9;Logistic激活函数卷积神经网络模型(模型III)的R2=0.958 8。CNN的激活函数模型无需依赖经验模型筛选,与传统经验模型相比,基于Logistic方程的树高-胸径卷积神经网络模型决定系数高且均方根误差低,拟合精度普遍更高,能更好地拟合不同树种的生长规律,提高预测的准确性和稳定性,优化林业的生态和经济效益。

    Abstract:

    The study aimed to predict the tree height of large-diameter mixed plantations of Eucalyptus urophylla×E. grandis using convolutional neural networks (CNN) and provide a theoretical basis for forest resource monitoring and evaluation. The research focused on 24 plots of mixed plantations of Eucalyptus urophylla×E. grandis intercropped with Mytilaria laosensis, Castanopsis hystrix, Manglietia glauca, and Michelia macclure at the Nanning Eucalyptus Field Station. By combining the information of dominant tree species (groups) in the stand and using statistical inference based on sample information and prior information of CNN, suitable model structures for each tree species (group) were obtained through training. Using basically consistent modeling data, traditional tree height equations were solved, and the modeling plots that did not participate in the modeling were used as a validation set for comparative analysis based on six classical models of nonlinear models or nonlinear mixed effects and three CNN models based on activation functions. The results showed that the RMSE (root-mean-square error) values of Näslund, Curtis, Logistic, Weibull, Gomperz, and Korf traditional models and the L-M model (Model I) ranged from 2.5 to 5.6. The CNN model with ReLU activation function (Model II) had a RMSE of 2.304 2 and a R2 of 0.814 9, while the CNN model with Logistic activation function (Model III) had a R2 of 0.958 8. The activation function models of CNN do not rely on empirical model selection. Compared with traditional empirical models, the CNN model of tree height-diameter at breast height (DBH) based on the Logistic equation has a higher determination coefficient and lower root mean square error, with generally higher fitting accuracy. It can better fit the growth patterns of different tree species, improve the accuracy and stability of predictions, and optimize the ecological and economic benefits of forestry.

    参考文献
    相似文献
    引证文献
引用本文

任一平,杨梅,任世奇,朱慧,韦振道,伍琪.基于卷积神经网络的尾巨桉混交林胸径-树高模型[J].热带亚热带植物学报,2025,33(2):140~148

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-21
  • 最后修改日期:2024-03-12
  • 在线发布日期: 2025-04-03
文章二维码