木薯JAZ基因的鉴定和对不同胁迫的响应模式
作者:
基金项目:

国家自然科学基金项目(3236045);国家现代农业产业技术体系项目(CARS-11-HNSHY);海南省自然科学基金项目(321RC1095)资助


Identification of Manihot esculenta JAZ Genes and Their Response Pattern to Different Stresses
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    JAZ (jasmonate ZIM-domain)蛋白在植物响应生物与非生物胁迫方面具有重要作用。该研究利用生物信息学在木薯(Manihot esculenta)中鉴定到16个JAZ基因,不均匀分布在11条染色体上。16个JAZ基因中有7对呈共线性关系,全为片段重复基因,其中4对相似度高的共线性基因的Ka/Ks小于1,表明木薯JAZ家族基因在进化中受到纯化选择。13个JAZ蛋白包含ZIM、Jas和NT结构域,3个蛋白NT结构域缺失。13个JAZ基因包含完整的UTR、内含子和外显子序列,其余缺失UTR区或者内含子。JAZ家族基因启动子区存在多个响应胁迫、脱落酸和水杨酸的顺式作用元件。组织特异性表达分析结果表明花和块根中有较多高表达JAZ基因(如MeJAZ2/MeJAZ4/MeJAZ6/MeJAZ9/MeJAZ13),其次为茎杆。同时大多数MeJAZ基因响应多种非生物胁迫,如干旱诱导较多MeJAZ基因的表达,MeJAZ16基因被水杨酸显著诱导, 这为木薯遗传改良筛选优质基因提供参考。

    Abstract:

    Jasmonate ZIM-domain (JAZ) proteins play an important role in plant response to biological and abiotic stresses. There were 16 MeJAZ genes identified in Manihot esculenta by bioinformatics, which were unevenly distributed on 11 chromosomes. Among the 16 MeJAZ genes, 7 pairs of gene showed collinear relationship, all of which were fragment repeat genes, and the Ka/Ks of the 4 collinear genes with high similarity were less than 1, indicating that the JAZ family genes were selected for purification in evolution. Thirteen MeJAZ proteins contained ZIM, Jas and NT domains, and the other 3 MeJAZ proteins were missing NT domains. Thirteen MeJAZ genes contained complete UTR, intron and exon sequences, the other genes lacked the UTR region or intron sequences. The promoter region of MeJAZs contained multiple cis-acting elements responsing to abiotic stresses, ABA and SA. There were more MeJAZs with high expression in root tuber and flower, such as MeJAZ2/MeJAZ4/MeJAZ6/MeJAZ9/MeJAZ13, followed by stems. At the same time, most of MeJAZ genes responded to multiple abiotic stresses, drought induced the expression of more MeJAZ genes, and the MeJAZ16 gene was significantly induced by SA. Therefore, these would provide a reference for genetic improvement and selection of high-quality genes in Manihot esculenta.

    参考文献
    [1] EL-SHARKAWY M A. Cassava biology and physiology [J]. Plant Mol Biol, 2004, 56(4): 481-501. doi: 10.1007/s11103-005-2270-7.
    [2] CHETTY CC, Rossin CB, Gruissem W, Vanderschuren H, Rey ME. 2013. Empowering biotechnology in southern Africa: Establishment of a robust transformation platform for the production of transgenic industry-preferred cassava [J]. New Biotechnol, 2013, 30: 136-143.
    [3] COCK J H, FRANKLIN D, SANDOVAL G, et al. The ideal cassava plant for maximum yield [J]. Crop Sci, 1979, 19(2): 271-279. doi: 10. 2135/cropsci1979.0011183X001900020025x.
    [4] ZHANG P, YANG J, ZHOU W Z, et al. Progress and perspective of cassava molecular breeding for bioenergy development [J]. Chin Bull Life Sci, 2014, 26(5): 465-473. [张鹏, 杨俊, 周文智, 等. 能源木薯高淀粉抗逆分子育种研究进展与展望[J]. 生命科学, 2014, 26(5): 465-473. doi: 10.13376/j.cbls/2014069.]
    [5] FU D D, HAN X R, WEN J S, et al. China’s tropical agricultural product imports: A Rotterdam model analysis [J]. Chin J Agric Resour Reg Plann, 2022, 43(11): 168-177. [付丹丹, 韩昕儒, 问锦尚, 等. 基于Rotterdam模型的中国热带农产品进口市场格局研究[J]. 中国农业资源与区划, 2022, 43(11): 168-177. doi: 10.7621/cjarrp.1005-9121.20221117.]
    [6] CHEN Y S, ZHOU R, ZHANG T. Research on import substitution of feed grain in China [J]. J Agrotechnol Econ, 2022(7): 64-77. [陈雨生, 周睿, 张婷. 中国饲料粮进口替代研究[J]. 农业技术经济, 2022(7): 64-77. doi: 10.13246/j.cnki.jae.2022.07.001.]
    [7] MUIRURI S K, NTUI V O, TRIPATHI L, et al. Mechanisms and approaches towards enhanced drought tolerance in cassava (Manihot esculenta) [J]. Curr Plant Biol, 2021, 28: 100227. doi: 10.1016/j.cpb. 2021.100227.
    [8] ZHAO P J, LIU P, SHAO J F, et al. Analysis of different strategies adapted by two cassava cultivars in response to drought stress: Ensuring survival or continuing growth [J]. J Exp Bot, 2015, 66(5): 1477-1488. doi: 10.1093/jxb/eru507.
    [9] WANG B, GUO X, ZHAO P J, et al. Molecular diversity analysis, drought related marker-traits association mapping and discovery of excellent alleles for 100-day old plants by EST-SSRs in cassava germplasms (Manihot esculenta Cranz) [J]. PLoS One, 2017, 12(5): e0177456. doi: 10.1371/journal.pone.0177456.
    [10] ZHAO P J, GUO X, WANG B, et al. Overexpression of MeH1.2 gene inhibited plant growth and increased branch root differentiation in transgenic cassava [J]. Crop Sci, 2021, 61(4): 2639-2650. doi: 10. 1002/csc2.20455.
    [11] LI S X, CHENG Z H, DONG S M, et al. Global identification of full-length cassava lncRNAs unveils the role of cold-responsive intergenic lncRNA 1 in cold stress response [J]. Plant Cell Environ, 2022, 45(2): 412-426. doi: 10.1111/pce.14236.
    [12] GUO X, YU X L, XU Z Y, et al. CC-type glutaredoxin, MeGRXC3, associates with catalases and negatively regulates drought tolerance in cassava (Manihot esculenta Crantz) [J]. Plant Biotechnol J, 2022, 20(12): 2389-2405. doi: 10.1111/pbi.13920.
    [13] LI S X, CHENG Z H, LI Z B, et al. MeSPL9 attenuates drought resi-stance by regulating JA signaling and protectant metabolite contents in cassava [J]. Theor Appl Genet, 2022, 135(3): 817-832. doi: 10.1007/s00122-021-04000-z.
    [14] WEI X, LIU Y H, LIU Y Y, et al. Advances of JAZ family in plants [J]. Plant Physiol J, 2021, 57(5): 1039-1046. [魏昕, 刘雨恒, 刘宇阳, 等. 植物JAZ蛋白家族研究进展[J]. 植物生理学报, 2021, 57(5): 1039-1046. doi: 10.13592/j.cnki.ppj.2020.0532.]
    [15] KAZAN K, MANNERS J M. JAZ repressors and the orchestration of phytohormone crosstalk [J]. Trends Plant Sci, 2012, 17(1): 22-31. doi: 10.1016/j.tplants.2011.10.006.
    [16] CAO H Z, LI W, PANG X, et al. Interaction between transcription factor ZmMYC7 and Arabidopsis JAZ family genes [J]. J Hebei Agric Univ, 2019, 42(6): 77-82. [曹宏哲, 李薇, 庞茜, 等. 转录因子ZmMYC7与拟南芥JAZ家族基因的互作研究[J]. 河北农业大学学报, 2019, 42(6): 77-82. doi: 10.13320/j.cnki.jauh.2019.0125.]
    [17] PANG X, ZHANG K, YU L, et al. Expression pattern of JAZ family genes in Zea mays [J]. J Hebei Agric Univ, 2019, 42(2): 24-29. [庞茜, 张康, 于璐, 等. 玉米JAZ家族基因的表达规律分析[J]. 河北农业大学学报, 2019, 42(2): 24-29. doi: 10.13320/j.cnki.jauh.2019.0028.]
    [18] ZHANG J X, MA Y G, WANG H L, et al. Characteristics of JAZ gene family of Pinus tabuliformis and identification of functional domain of its interaction with DELLA protein [J]. J Beijing For Univ, 2022, 44(12): 12−22. [张晶星, 马彦广, 王辉丽, 等. 油松JAZ基因家族特征及其与DELLA蛋白互作的功能域鉴定[J]. 北京林业大学学报, 2022, 44(12): 12-21. doi: 10.12171/j.1000-1522.20220027.]
    [19] ZHENG L L, WAN Q, WANG H G, et al. Genome-wide identification and expression of TIFY family in cassava (Manihot esculenta Crantz) [J]. Front Plant Sci, 2022, 13: 1017840. doi: 10.3389/fpls.2022.1017840.
    [20] FERRARI S, VAIRO D, AUSUBEL F M, et al. Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection [J]. Plant Cell, 2003, 15(1): 93-106. doi: 10.1105/tpc.005165.
    [21] YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters [J]. Trends Plant Sci, 2005, 10(2): 88-94. doi: 10.1016/j. tplants.2004.12.012.
    [22] MENG L, ZHANG T, GENG S S, et al. Comparative proteomics and metabolomics of JAZ7-mediated drought tolerance in Arabidopsis [J]. J Proteom, 2019, 196: 81-91. doi: 10.1016/j.jprot.2019.02.001.
    [23] YANG D L, YAO J, MEI C S, et al. Plant hormone jasmonate priori-tizes defense over growth by interfering with gibberellin signaling cascade [J]. Proc Natl Acad Sci USA, 2012, 109(19): E1192-E1200. doi: 10.1073/pnas.1201616109.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

林晨俞,郭鑫,于晓惠,赵平娟.木薯JAZ基因的鉴定和对不同胁迫的响应模式[J].热带亚热带植物学报,2025,33(2):187~196

复制
分享
文章指标
  • 点击次数:38
  • 下载次数: 74
  • HTML阅读次数: 75
  • 引用次数: 0
历史
  • 收稿日期:2023-11-01
  • 最后修改日期:2024-03-26
  • 在线发布日期: 2025-04-03
文章二维码