盐胁迫对木奶果苗抗逆生理学影响
作者:
基金项目:

广东省粤东药食资源功能物质与治未病研究重点实验室项目(2021B1212040015);韩山师范学院校级项目(QD202122,QD202123);潮州市科技专项(202201TG03)资助


Effect of Salt Stress on Anti-adversity Physiology of Baccaurea ramiflora Seedlings
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解盐胁迫对木奶果生长的影响,研究了不同土壤盐浓度(0.05%、0.1%、0.15%和0.2%)对木奶果(Baccaurea ramiflora)幼苗抗逆生理机制的影响。结果表明,盐胁迫激发了木奶果幼苗的适应性,尤其是在低盐浓度(0.05%)下,可溶性糖含量和过氧化物酶活性显著增加。盐浓度达到0.1%时,可溶性蛋白含量显著增加;0.15%的盐浓度下,丙二醛含量显著上升;而游离脯氨酸和类黄酮含量在0.2%盐浓度下才表现出显著累积。盐处理的初期阶段(第1周),过氧化物酶活性迅速响应,其他指标在2周后显著变化。随处理时间的延长,部分指标如游离脯氨酸和可溶性蛋白含量及过氧化物酶活性呈先升后降的趋势。这对木奶果耐盐性育种和耐盐作物开发具有重要意义。

    Abstract:

    In order to understand the effects of salt stress on the growth of Baccaurea ramiflora seedlings, the physiological mechanism of stress resistance were studied treated with different soil salt concentrations (0.05%, 0.1%, 0.15% and 0.2%). The results showed that salt stress stimulated the adaptability of B. ramiflora seedlings, especially at low salt concentration (0.05%), soluble sugar content and peroxidase activity increased significantly. When the salt concentration reached 0.1%, the soluble protein content increased significantly. The content of malondialdehyde increased significantly at 0.15% salt concentration. The content of free proline and flavonoids showed significant accumulation at 0.2% salt concentration. In the initial phase (1st week) of salt treatment, peroxidase activity responded rapidly, and other indicators changed significantly after 2 weeks. Some indexes, such as free proline and soluble protein contents and peroxidase activity, increased at first and then decreased with the treatment time. So, it was of great significance for breeding salt-tolerance of B. ramiflora and developing salt-tolerant crops.

    参考文献
    [1] HUANG H T, HUANG J J, CHEN J, et al. Growth, physiological and biochemical response of Baccaurea ramiflora Lour. seedlings to different shading environments [J]. Chin J Ecol, 2020, 39(5): 1538-1547. [黄河腾, 黄剑坚, 陈杰, 等. 不同遮阴环境下木奶果幼苗生长与生理生化的响应[J]. 生态学杂志, 2020, 39(5): 1538-1547. doi: 10.13292/j.1000-4890.202005.015.]
    [2] LI Q Q, LIU X L, YANG J J, et al. Nutritional components of Baccaurea ramiflora and the processing technology research of B. ramiflora wine [J]. Sci Technol Cereals Oils Foods, 2022, 30(4): 136-142. [黎秋杞, 刘小莉, 杨婧娟, 等. 木奶果的营养成分及果酒制备工艺研究[J]. 粮油食品科技, 2022, 30(4): 136-142. doi: 10.16210/j. cnki.1007-7561.2022.04.018.]
    [3] WANG H J, XING Y Q, LIN S, et al. Research and application of Baccaurea fruit resources [J]. Mod Agric Sci Technol, 2013(21): 122-123. [王海杰, 邢诒强, 林盛, 等. 木奶果资源的研究应用[J]. 现代农业科技, 2013(21): 122-123. doi: 10.3969/j.issn.1007-5739.2013.21.075.]
    [4] LUO H C, HUANG J J, CHEN J. Advances in development and utili-zation of wild Baccaurea ramiflora [J]. Trop For, 2017, 45(4): 50-52. [罗浩城, 黄剑坚, 陈杰. 野生木奶果的开发利用研究进展[J]. 热带林业, 2017, 45(4): 50-52. doi: 10.3969/j.issn.1672-0938.2017.04.016.]
    [5] Delectis Florae Reipublicae Popularis Sinicae, Agendae Academiae Sinicae Editta. Florae Reipublicae Popularis Sinicae, Tomus 2[M]. Beijing: Science Press, 1994. [中国科学院中国植物志编委会. 中国植物志, 第2卷[M]. 北京: 科学出版社, 1994.]
    [6] DAI G X, PENG K Q, PI C H. The effects of calcium on salt-tolerance in plant [J]. Chin Agric Sci Bull, 2003, 19(3): 97-101. [戴高兴, 彭克勤, 皮灿辉. 钙对植物耐盐性的影响[J]. 中国农学通报, 2003, 19(3): 97-101. doi: 10.3969/j.issn.1000-6850.2003.03.029.]
    [7] YU H W, LI Y. Research progress on salt tolerance of plant [J]. J Beijing Univ (Nat Sci), 2004, 5(3): 257-263. [于海武, 李莹. 植物耐盐性研究进展[J]. 北华大学学报(自然科学版), 2004, 5(3): 257-263. doi: 10.3969/j.issn.1009-4822.2004.03.023.]
    [8] XU T, ZHANG K Y, GU C H. Effects of salt stress on several physio-logical and biochemical indexes of Heimia myrtifolia [J/OL]. Mol Plant Breed, [2022-04-26]. [徐涛, 张柯岩, 顾翠花. 盐胁迫对黄薇若干生理生化指标的影响[J/OL]. 分子植物育种, [2022-04-26]. https://kns.cnki.net/kcms/detail/46.1068.S.20220425.1310.008.html.]
    [9] LIU W, SUN Z, YAO S Y, et al. Response of Toona sinensis to different neutral salt stress and recovery period [J]. J Agric Sci, 2022, 43(2): 13-17. [刘薇, 孙桢, 姚苏焱, 等. 红芽香椿脂质过氧化及渗透调节特征对不同中性盐胁迫及恢复期的响应[J]. 农业科学研究, 2022, 43(2): 13-17. doi: 10.13907/j.cnki.nykxyj.2022.02.012.]
    [10] YAN M, WANG Y, BAO J K, et al. Effects of mixed saline-alkali stress on osmotic regulation substances and antioxidant enzymes activities of Ziziphus jujube cv. Junzao [J]. Shandong Agric Sci, 2022, 54(5): 37-43. [闫敏, 王艳, 鲍荆凯, 等. 混合盐碱胁迫对骏枣渗透调节物质和抗氧化酶活性的影响[J]. 山东农业科学, 2022, 54(5): 37-43. doi: 10. 14083/j.issn.1001-4942.2022.05.006.]
    [11] TIAN G Z, LI H F, QIU W F. Advances on research of plant peroxi-dases [J]. J Wuhan Bot Res, 2001, 19(4): 332-344. [田国忠, 李怀方, 裘维蕃. 植物过氧化物酶研究进展[J]. 武汉植物学研究, 2001, 19(4): 332-344. doi: 10.3969/j.issn.2095-0837.2001.04.009.]
    [12] ARIGA T, KOSHIYAMA I, FUKUSHIMA D. Antioxidative properties of procyanidins B-1 and B-3 from Azuki Beans in aqueous systems [J]. Agric Biol Chem, 1988, 52(11): 2717-2722. doi: 10.1080/00021369. 1988.10869144.
    [13] KE Y Z, ZHOU J X, ZHANG X D, et al. Effects of salt stress on photosynthetic characteristics of mulberry seedlings [J]. Sci Silv Sin, 2009, 45(8): 61-66. [柯裕州, 周金星, 张旭东, 等. 盐胁迫对桑树幼苗光合生理生态特性的影响[J]. 林业科学, 2009, 45(8): 61-66. doi: 10.3321/j.issn:1001-7488.2009.08.011.]
    [14] YI L, YAO L J, LI S H, et al. Structural changes in ‘Newhall’ navel oranges infected with Candiatus Liberibacter asiaticus [J]. J Fruit Sci, 2018, 35(7): 853-858. [易龙, 姚林建, 李双花, 等. 柑橘黄龙病菌侵染对‘纽荷尔’脐橙组织结构的影响[J]. 果树学报, 2018, 35(7): 853-858. doi: 10.13925/j.cnki.gsxb.20180027.]
    [15] YUAN M. Study on the physiology and biochemistry and mechanism of different organs of sarcodactylis infected HLB [D]. Guangzhou: Guangdong Pharmaceutical University, 2020. [袁蒙. 黄龙病侵染对广佛手不同器官生理生化的影响及其机制初探[D]. 广州: 广东药科大学, 2020.]
    [16] GALLEGO S M, BENAVÍDES M P, TOMARO M L. Effect of heavy metal ion excess on sunflower leaves: Evidence for involvement of oxidative stress [J]. Plant Sci, 1996, 121(2): 151-159. doi: 10.1016/S0168-9452(96)04528-1.
    [17] PAN X, QIU Q, LI J Y, et al. Changes in osmosis-regulating substances of three tree species seedlings under drought stress [J]. J S China Agric Univ, 2012, 33(4): 519-523. [潘昕, 邱权, 李吉跃, 等. 干旱胁迫下华南地区3种苗木渗透调节物质的动态变化[J]. 华南农业大学学报, 2012, 33(4): 519-523. doi: 10.7671/j.issn.1001-411X.2012.04.018.]
    [18] MA Q X, HE J B. Biochemical studies on wheat varieties with different resistance to Bipolaris sorokiniana [J]. J Henan Agric Univ, 1992, 26(1): 38-43. [马奇祥, 何家泌. 不同抗性小麦品种感染根腐叶斑病前后生化特性的研究[J]. 河南农业大学学报, 1992, 26(1): 38-43. doi: 10.16445/j.cnki.1000-2340.1992.01.006.]
    [19] MEHDY M C. Active oxygen species in plant defense against pathogens [J]. Plant Physiol, 1994, 105(2): 467-472. doi: 10.1104/pp.105.2.467.
    [20] NAKABAYASHI R, YONEKURA-SAKAKIBARA K, URANO K, et al. Enhancement of oxidative and drought tolerance in Arabidopsis by over accumulation of antioxidant flavonoids [J]. Plant J, 2014, 77(3): 367-379. doi: 10.1111/tpj.12388.
    [21] CHEN J X, WANG X F. Experimental Instruction in Plant Physiology [M]. 2nd ed. Guangzhou: South China University of Technology Press, 2006. [陈建勋, 王晓峰. 植物生理学试验指导[M]. 第2版. 广州: 华南理工大学出版社, 2006.]
    [22] SHI H T. Experimental Guidance of Plant Stress Physiology [M]. Beijing: Science Press, 2016. [施海涛. 植物逆境生理学实验指导[M]. 北京: 科学出版社, 2016.]
    [23] ZHAO Y P, ZHAO X Y. Optimization of classical measuring method of soluble sugar in plant [J]. J Anhui Agric Sci, 2018, 46(4): 184-185. [赵轶鹏, 赵新勇. 植物体可溶性糖测定方法的优化[J]. 安徽农业科学, 2018, 46(4): 184-185. doi: 10.13989/j.cnki.0517-6611.2018.04.056.]
    [24] LI L, HE G Z. Experimental Instruction in Plant Physiology [M]. Beijing: Higher Education Press, 2021. [李玲, 何国振. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2021.]
    [25] ZHANG Y, LI H W, ZHANG Y C, et al. Study on extraction methods of flavonoids from hawthorn fruits and their determination [J]. J Harbin Med Univ, 2001, 35(3): 183-184. [张妍, 李厚伟, 张永春, 等. 山楂中总黄酮几种提取分离方法的考察及含量测定[J]. 哈尔滨医科大学学报, 2001, 35(3): 183-184. doi: 10.3969/j.issn.1000-1905.2001.03.010.]
    [26] PAN R Z, WANG X J, LI N H. Plant Physiology [M]. 7th ed. Beijing: Higher Education Press, 2012. [潘瑞炽, 王小菁, 李娘辉. 植物生理学[M]. 第7版. 北京: 高等教育出版社, 2012.]
    [27] WANG Z H, DAI L F, ZHAO W, et al. Effects of salt stress on main osmotic adjustment substance in root and shoot of maize [J]. J Henan Agric Sci, 2013, 42(6): 21-23. [王征宏, 戴凌峰, 赵威, 等. 盐胁迫对玉米根、芽主要渗透调节物质的影响[J]. 河南农业科学, 2013, 42(6): 21-23. doi: 10.15933/j.cnki.1004-3268.2013.06.018.]
    [28] TANG J L, JI X Y, ZHENG X, et al. Dynamic responses of physiology, biochemistry and structure of vegetative organs of Juglans nigra to salt stress [J]. J Fruit Sci, 2024, 41(2): 294-313. [唐佳莉, 姬新颖, 郑旭, 等. 盐胁迫下东部黑核桃生理生化与营养器官结构的动态响应[J]. 果树学报, 2024, 41(2): 294-313. doi: 10.13925/j.cnki.gsxb.20230390.]
    [29] XIE Z M, SONG G, MA L F, et al. Physiological characteristics and salt tolerance evaluation of Jiashi melon seeding’s response to salt stress [J]. China Cucurbits Veg, 2023, 36(10): 42-51. [谢志明, 宋刚, 马刘峰, 等. 伽师瓜幼苗响应盐胁迫的生理特性及耐盐性评价[J]. 中国瓜菜, 2023, 36(10): 42-51. doi: 10.16861/j.cnki.zggc.20231009.002.]
    [30] XING J H, PAN D Z, TAN F L, et al. Effects of NaCl stress on the osmotic substance contents in Kandelia candel roots [J]. Ecol Environ Sci, 2017, 26(11): 1865-1871. [邢建宏, 潘德灼, 谭芳林, 等. NaCl胁迫对秋茄根系渗透调节物质含量的影响[J]. 生态环境学报, 2017, 26(11): 1865-1871. doi: 10.16258/j.cnki.1674-5906.2017.11.006.]
    [31] YU J J, CHEN S X, ZHAO Q, et al. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora [J]. J Proteome Res, 2011, 10(9): 3852-3870. doi: 10.1021/pr101102p.
    [32] WANG X C, CHANG L L, WANG B C, et al. Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance [J]. Mol Cell Proteom, 2013, 12(8): 2174-2195. doi: 10.1074/mcp.M112.022475.
    [33] WANG L X, PAN D Z, LV X J, et al. A multilevel investigation to discover why Kandelia candel thrives in high salinity [J]. Plant Cell Environ, 2016, 39(11): 2486-2497. doi: 10.1111/pce.12804.
    [34] ZHANG L L, YU M H, DING G D, et al. Effects of salt and alkali stress on the growth and physiological characteristics of Cyperus esculentus [J]. Sci Soil Water Conserv, 2022, 20(2): 65-71. [张琳琳, 于明含, 丁国栋, 等. 盐碱胁迫对油沙豆生长和生理特性的影响[J]. 中国水土保持科学(中英文), 2022, 20(2): 65-71. doi: 10.16843/j. sswc.2022.02.009.]
    [35] WANG Q Z, LIU Q, GAO Y N, et al. Review on the mechanisms of the response to salinity-alkalinity stress in plants [J]. Acta Ecol Sin, 2017, 37(16): 5565-5577. [王佺珍, 刘倩, 高娅妮, 等. 植物对盐碱胁迫的响应机制研究进展[J]. 生态学报, 2017, 37(16): 5565-5577. doi: 10.5846/stxb201605160941.]
    [36] LIU Z X, ZHANG H X, YANG S, et al. Effects of NaCl stress on growth and photosynthetic characteristics of Elaeagnus angustifolia seedlings [J]. Sci Silv Sin, 2014, 50(1): 32-40. [刘正祥, 张华新, 杨升, 等. NaCl胁迫对沙枣幼苗生长和光合特性的影响[J]. 林业科学, 2014, 50(1): 32-40. doi: 10.11707/j.1001-7488.20140106.]
    [37] LI Y, CAI Y N, REN A Q, et al. Effects of saline-alkali stress on growth and physiological characteristics of Acer truncatum seedlings [J]. J NE For Univ, 2022, 50(8): 5-14. [李悦, 蔡亚南, 任安琦, 等. 盐碱胁迫对元宝枫幼苗生长和生理特性的影响[J]. 东北林业大学学报, 2022, 50(8): 5-14. doi: 10.13759/j.cnki.dlxb.2022.08.002.]
    [38] SONG X M, LÜ X J, QIU Z M, et al. Flavonoid metabolism and antioxidant activity in response to salt stress in mangrove Kandelia candel [J]. Acta Bot Boreali-Occident Sin, 2016, 36(12): 2461-2468. [宋晓敏, 吕晓杰, 邱智敏, 等. 红树植物秋茄类黄酮代谢及其抗氧化活性对高盐胁迫的响应[J]. 西北植物学报, 2016, 36(12): 2461-2468. doi: 10.7606/j.issn.1000-4025.2016.12.2461.]
    [39] XU N T. The effects of salt on seedling development and flavonoid bisoysynthesis in Ginkgo biloba [D]. Yangzhou: Yangzhou University, 2021. [徐宁焘. 盐胁迫对银杏幼苗生长及叶片类黄酮合成的影响[D]. 扬州: 扬州大学, 2021. doi: 10.27441/d.cnki.gyzdu.2021.001853.]
    [40] YAN S P, CHONG P F, ZHAO M, et al. Physiological response and proteomics analysis of Reaumuria soongorica under salt stress [J]. Sci Rep, 2022, 12(1): 2539. doi: 10.1038/s41598-022-06502-2.
    [41] NEFISSI OUERTANI R, ARASAPPAN D, RUHLMAN T A, et al. Effects of salt stress on transcriptional and physiological responses in barley leaves with contrasting salt tolerance [J]. Int J Mol Sci, 2022, 23(9): 5006. doi: 10.3390/ijms23095006.
    [42] WU F N, LIU L H, FOX E G P, et al. Physiological variables influenced by ‘Candidatus Liberibacter asiaticus’ infection in two Citrus species [J]. Plant Dis, 2023, 107(6): 1769-1776. doi: 10.1094/PDIS-08-22-1747-RE.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴丰年,傅家威,陈颖,黄佳佳,苏绮婷,郑嘉琪,陈滋凯,朱慧,郑玉忠,黄剑坚.盐胁迫对木奶果苗抗逆生理学影响[J].热带亚热带植物学报,2025,33(2):207~212

复制
分享
文章指标
  • 点击次数:51
  • 下载次数: 70
  • HTML阅读次数: 74
  • 引用次数: 0
历史
  • 收稿日期:2023-10-26
  • 最后修改日期:2024-01-24
  • 在线发布日期: 2025-04-03
文章二维码