南亚热带山地常绿阔叶林树种木质部经济学谱分析
作者:
基金项目:

国家自然科学基金项目(32171502)资助


Analysis of Xylem Economic Spectrum of Evergreen Broad-leaved Forest Tree Species in South Subtropical Mountain
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [47]
  • |
  • 相似文献 [4]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    南亚热带中山地带的山地常绿阔叶林(简称山地林)具有重要的生态价值,但是对山地林树种的环境适应策略仍缺乏了解。该研究基于南亚热带山地林固定监测样地,对25种代表性常绿树种的木质部解剖结构、饱和含水量、机械强度以及水力结构等性状进行测定,分析木质部经济学谱系,阐明山地林树种的生理生态策略。结果表明,边材比导率与导管密度和导管腔比例显著相关,但是其他木质部结构特征与生理功能之间无直接的对应关系,缺乏共同的结构基础导致木质部水力学性状、饱和含水量和机械强度之间无显著的相关性。因此,山地林树种不支持木质部经济学谱系关系。边材比导率和栓塞抗性之间无权衡关系,可能与山地林较低的环境选择压力有关。群落重要值较高的树种具有较低的木材密度以及较高的边材比导率和饱和含水量,说明提高木质部水分运输能力和储水能力有利于适应山地环境。该研究揭示了山地林常绿树种木质部性状组合的多样性,有利于树种共存和应对环境变化。

    Abstract:

    The montane evergreen broad-leaved forest in the south subtropical zone has important ecological value, but the environment adaptation strategies of montane forest species are still not well understood. Based on the fixed monitoring plots of south subtropical mountain forest, xylem anatomical structure, saturated water content, mechanical strength and hydraulic structure of 25 representative evergreen tree species were determined, xylem economic spectrum was analyzed, and physiological and ecological strategies of tree species in mountain forest were clarified. The results showed that the specific conductivity of sapwood was significantly correlated with the vessel density and the proportion of vessel cavities, but there was no direct correspondence between other xylem structural characteristics and physiological functions. The lack of common structural basis led to no significant correlation between xylem hydraulic properties, saturated water content and mechanical strength. Therefore, the tree species in the mountain forest do not support the xylem economic pedigree. There was no tradeoff between sapwood specific conductivity and embolic resistance, which may be related to the lower environmental selection pressure in mountain forest. The tree species with higher community importance value had lower wood density and higher sapwood specific conductivity and saturated water content, indicating that improving xylem water transport capacity and water storage capacity was conducive to adapting to the mountain environment. This study revealed the diversity of xylem character combinations of evergreen tree species in mountain forest, which is conducive to tree species coexistence and coping with environmental changes.

    参考文献
    [1] PRATT R B, JACOBSEN A L. Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics [J]. Plant Cell Environ, 2017, 40(6): 897-913. doi: 10.1111/pce.12862.
    [2] JANSSEN T A J, HÖLTTÄ T, FLEISCHER K, et al. Wood allocation trade-offs between fiber wall, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees [J]. Plant Cell Environ, 2020, 43(4): 965-980. doi: 10.1111/pce.13687.
    [3] CHAVE J, COOMES D, JANSEN S, et al. Towards a worldwide wood economics spectrum [J]. Ecol Lett, 2009, 12(4): 351-366. doi: 10.1111/j.1461-0248.2009.01285.x.
    [4] ARENAS-NAVARRO M, OYAMA K, GARCÍA-OLIVA F, et al. Seasonal temperature and precipitation regimes drive variation in the wood of oak species (Quercus) along a climatic gradient in western Mexico [J]. IAWA J, 2023, 44(2): 140-155. doi: 10.1163/22941932-bja10110.
    [5] VICENTE E, DIDION-GENCY M, MORCILLO L, et al. Aridity and cold temperatures drive divergent adjustments of European beech xylem anatomy, hydraulics and leaf physiological traits [J]. Tree Physiol, 2022, 42(9): 1720-1735. doi: 10.1093/treephys/tpac029.
    [6] HOEBER S, LEUSCHNER C, KÖHLER L, et al. The importance of hydraulic conductivity and wood density to growth performance in eight tree species from a tropical semi-dry climate [J]. For Ecol Manage, 2014, 330: 126-136. doi: 10.1016/j.foreco.2014.06.039.
    [7] SANTIAGO L S, GOLDSTEIN G, MEINZER F C, et al. Leaf photo-synthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees [J]. Oecologia, 2004, 140(4): 543-550. doi: 10.1007/s00442-004-1624-1.
    [8] ROSNER S. Wood density as a proxy for vulnerability to cavitation: Size matters [J]. J Plant Hydraul, 2017, 4: e001. doi: 10.20870/jph. 2017.e001.
    [9] CAMARERO J J. Wood density as a proxy of drought-induced forest dieback in silver fir [J]. Dendrochronologia, 2022, 76: 126027. doi: 10.1016/j.dendro.2022.126027.
    [10] LIU S H, LI H, LU H F. Dynamics in ecosystem service values of lower subtropical forest in Dinghushan [J]. Ecol Environ Sci, 2011, 20(6/7): 1042-1047. [刘树华, 李浩, 陆宏芳. 鼎湖山南亚热带森林生态系统服务价值动态[J]. 生态环境学报, 2011, 20(6/7): 1042-1047. doi: 10.3969/j.issn.1674-5906.2011.06.009.]
    [11] WU L. Studies on species diversity of plants in Damingshan National Nature Reserve of Guangxi [D]. Guilin: Guangxi Normal University, 2012. [吴磊. 广西大明山国家级自然保护区植物物种多样性研究[D]. 桂林: 广西师范大学, 2012.]
    [12] LIANG D Y, SU Z D, HUANG G L. The frozen weather model and forecast method of Daming Mountain in Guangxi [J]. J Meteor Res Appl, 2021, 42(2): 13-18. [梁岱云, 苏兆达, 黄归兰. 广西大明山冰冻天气概念模型及其预报方法[J]. 气象研究与应用, 2021, 42(2): 13-18. doi: 10.19849/j.cnki.CN45-1356/P.2021.2.03.]
    [13] MAYR S, SCHMID P, BEIKIRCHER B, et al. Die hard: Timberline conifers survive annual winter embolism [J]. New Phytol, 2020, 226(1): 13-20. doi: 10.1111/nph.16304.
    [14] GUO S H, XUE L. Effects of ice-snow damage on forests [J]. Acta Ecol Sin, 2012, 32(16): 5242-5253. [郭淑红, 薛立. 冰雪灾害对森林的影响[J]. 生态学报, 2012, 32(16): 5242-5253. doi: 10.5846/stxb 201201120072.]
    [15] YIN Y H, MA D Y, WU S H. Climate change risk to forests in China associated with warming [J]. Sci Rep, 2018, 8(1): 493. doi: 10.1038/s41598-017-18798-6.
    [16] FREEMAN B G, SONG Y L, FEELEY K J, et al. Montane species track rising temperatures better in the tropics than in the temperate zone [J]. Ecol Lett, 2021, 24(8): 1697-1708. doi: 10.1111/ELE.13762.
    [17] KAWAI K, OKADA N. Coordination of leaf and stem traits in 25 species of Fagaceae from three biomes of East Asia [J]. Botany, 2019, 97(7): 391-403. doi: 10.1139/cjb-2019-0010.
    [18] HUANG G L, HUANG Z J, HUANG L, et al. The climate charac-teristics and study on weather index of Daming Mountain Scenic Region in Guangxi [J]. J Meteor Res Appl, 2015, 36(1): 76-79. [黄归兰, 黄增俊, 黄磊, 等. 广西大明山景区气候特点及气象指数研究[J]. 气象研究与应用, 2015, 36(1): 76-79. doi: 10.3969/j.issn.1673-8411.2015.01.016.]
    [19] WANG W, HUANG J, YIN Q L. Physical and chemical properties and systematic classification of soil in the vertical zone of Daming Mountain in Guangxi [J]. J Zhejiang Agric Sci, 2016, 57(9): 1548-1554. [王薇, 黄景, 银秋玲. 广西大明山垂直带土壤理化性质及其系统分类[J]. 浙江农业科学, 2016, 57(9): 1548-1554. doi: 10.16178/j. issn.0528-9017.20160953.]
    [20] FANG J Y, WANG R P, SHEN Z H, et al. Methods and protocols for plant community inventory [J]. Biodiv Sci, 2009, 17(6): 533-548. [方精云, 王襄平, 沈泽昊, 等. 植物群落清查的主要内容、方法和技术规范[J]. 生物多样性, 2009, 17(6): 533-548. doi: 10.3724/SP.J.1003. 2009.09253.]
    [21] PEREIRA L, MIRANDA M T, PIRES G S, et al. A semi-automated method for measuring xylem vessel length distribution [J]. Theor Exp Plant Physiol, 2020, 32(4): 331-340. doi: 10.1007/s40626-020-00189-4.
    [22] ZHANG J L, CAO K F. Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species [J]. Funct Ecol, 2009, 23(4): 658-667. doi: 10. 1111/J.1365-2435.2009.01552.X.
    [23] ARITSARA A N A, NI M Y, WANG Y Q, et al. Tree growth is correlated with hydraulic efficiency and safety across 22 tree species in a subtropical karst forest [J]. Tree Physiol, 2023, 43(8): 1307-1318. doi: 10.1093/treephys/tpad050.
    [24] WHEELER J K, HUGGETT B A, TOFTE A N, et al. Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism [J]. Plant Cell Environ, 2013, 36(11): 1938-1949. doi: 10.1111/pce.12139.
    [25] TYREE M T, SPERRY J S. Vulnerability of xylem to cavitation and embolism [J]. Annu Rev Plant Physiol Plant Mol Biol, 1989, 40(1): 19-36. doi: 10.1146/annurev.pp.40.060189.000315.
    [26] ZIEMIŃSKA K, ROSA E, GLEASON S M, et al. Wood day capaci-tance is related to water content, wood density, and anatomy across 30 temperate tree species [J]. Plant Cell Environ, 2020, 43(12): 3048-3067. doi: 10.1111/pce.13891.
    [27] BARBOSA A C F, PACE M R, WITOVISK L, et al. A new method to obtain good anatomical slides of heterogeneous plant parts [J]. IAWA J, 2010, 31(4): 373-383. doi: 10.1163/22941932-90000030.
    [28] RUEDEN C T, HINER M C, ELICEIRI K W. ImageJ: Image analysis interoperability for the next generation of biological image data [J]. Microsc Microanal, 2016, 22(S3): 2066-2067. doi: 10.1017/S143192761601117X.
    [29] TYREE M T, ZIMMERMANN M H. Xylem Structure and the Ascent of Sap [M]. Berlin, Heidelberg: Springer, 2002. doi: 10.1007/978-3-662-04931-0.
    [30] XUE D M, LIU J, LIN F Y, et al. Tensile and bending characteristics of 3 kinds of br, 2021, 48: 102044. doi: 10.1016/J. RSMA.2021.102044.
    [48] 蕄光桁O 剓霠F,朠兓单N 筈 G,礠楆牏杒杒扅打呔扅归爠恄砠穉, et 兡葬匮儠乖奡孲孩扡tion in growth, wood density, and stem taper along the stem in self-thinning stands of Sassafras tzumu [J]. Front Plant Sci, 2022, 13: 853968. doi: 10.3389/fpls.2022.853968.
    [49] MEINZER F C, JOHNSON D M, LACHENBRUCH B, et al. Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance [J]. Funct Ecol, 2009, 23(5): 922-930. doi: 10.1111/j.1365-2435.2009.01577.x.
    [50] WU G L, CHEN D X, ZHOU Z, et al. Canopy nitrogen addition enhance the photosynthetic rate of canopy species by improving leaf hydraulic conductivity in a subtropical forest [J]. Front Plant Sci, 2022, 13: 942851. doi: 10.3389/fpls.2022.942851.
    [51] LIU H, GLEASON S M, HAO G Y, et al. Hydraulic traits are coordinated with maximum plant height at the global scale [J]. Sci Adv, 2019, 5(2): eaav1332. doi: 10.1126/sciadv.aav1332.A J, 2019, 40(4): 645-672. doi: 10.1163/22941932-40190258.
    [35] ÖZPARPUCU M, GIERLINGER N, CESARINO I, et al. Significant influence of lignin on axial elastic modulus of poplar wood at low microfibril angles under wet conditions [J]. J Exp Bot, 2019, 70(15): 4039-4047. doi: 10.1093/jxb/erz180.
    [36] SOUZA DIAS A, OLIVEIRA R S, MARTINS F R. Costs and benefits of gas inside wood and its relationship with anatomical traits: A contrast between trees and lianas [J]. Tree Physiol, 2020, 40(7): 856-868. doi: 10.1093/treephys/tpaa034.
    [37] ZHU S D, SONG J J, LI R H, et al. Plant hydraulics and photo-synthesis of 34 woody species from different successional stages of subtropical forests [J]. Plant Cell Environ, 2013, 36(4): 879-891. doi: 10.1111/pce.12024.
    [38] KAACK L, WEBER M, ISASA E, et al. Pore constrictions in inter-vessel pit membranes provide a mechanistic explanation for xylem embolism resistance in angiosperms [J]. New Phytol, 2021, 230(5): 1829-1843. doi: 10.1111/nph.17282.
    [39] ISASA E, LINK R M, JANSEN S, et al. Addressing controversies in the xylem embolism resistance-vessel diameter relationship [J]. New Phytol, 2023, 238(1): 283-296. doi: 10.1111/NPH.18731.
    [40] SCHOLZ A, RABAEY D, STEIN A, et al. The evolution and function of vessel and pit characters with respect to cavitation resistance across 10Prunus species [J]. Tree Physiol, 2013, 33(7): 684-694. doi: 10. 1093/treephys/tpt050.
    [41] LIU H, YE Q, GLEASON S M, et al. Weak tradeoff between xylem hydraulic efficiency and safety: Climatic seasonality matters [J]. New Phytol, 2021, 229(3): 1440-1452. doi: 10.1111/nph.16940.
    [42] HUANG C Y, ZHANG F, ZHU S D. A comparative analysis of leaf traits in evergreen broadleaved forest tree species from different elevations in lower-subtropical region [J]. J Trop Subtrop Bot, 2024, 32(2): 151-160. [黄昶吟, 张峰, 朱师丹. 南亚热带不同海拔常绿阔叶林树种叶性状的比较分析[J]. 热带亚热带植物学报, 2024, 32(2): 151-160. doi: 10.11926/jtsb.4730.]
    [43] AWAD H, HERBETTE S, BRUNEL N, et al. No trade-off between hydraulic and mechanical properties in several transgenic poplars modified for lignins metabolism [J]. Environ Exp Bot, 2012, 77: 185-195. doi: 10.1016/j.envexpbot.2011.11.023.
    [44] SCHULDT B, LEUSCHNER C, BROCK N, et al. Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees [J]. Tree Physiol, 2013, 33(2): 161-174. doi: 10.1093/treephys/tps122.
    [45] TRUEBA S, POUTEAU R, LENS F, et al. Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island [J]. Plant Cell Environ, 2017, 40(2): 277-289. doi: 10.1111/pce.12859.
    [46] COCHARD H, BARIGAH S T, KLEINHENTZ M, et al. Is xylem cavitation resistance a relevant criterion for screening drought resis-tance among Prunus species? [J]. J Plant Physiol, 2008, 165(9): 976-982. doi: 10.1016/j.jplph.2007.07.020.
    [47] RAO M N, GANGULY D, PRASAD M H K, et al. Interspecific varia-tions in mangrove stem biomass: A potential storehouse of sequestered carbon [J]. Reg Stud Mar Sci
    引证文献
引用本文

甘晶僖,张峰,黄冬柳,朱师丹.南亚热带山地常绿阔叶林树种木质部经济学谱分析[J].热带亚热带植物学报,2025,33(2):131~139

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-24
  • 最后修改日期:2023-11-18
  • 在线发布日期: 2025-04-03
文章二维码