金线莲ArCRC基因的克隆、亚细胞定位和表达分析
作者:
基金项目:

福建省属公益类科研院所基本科研专项(2021R1030001);福建省农业科学院科技创新团队(CXTD2021001-2)资助


Cloning, Subcellular Localization and Expression Analysis of ArCRC Gene in Anoectochilus roxburghii
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解金线莲(Anoectochilus roxburghii) YABBY基因家族的CRABS CLAW (CRC)亚族基因在花和叶片发育中的功能,基于金线莲全长转录组数据RT-PCR克隆ArCRC基因,对其编码蛋白进行生物信息学、原核表达、亚细胞定位分析,采用qPCR技术对基因的表达模式进行分析。结果表明,金线莲ArCRC基因CDS长度为576 bp (GenBank登录号: OR394646), 编码191个氨基酸,含有YABBY superfamily和HMG-box_SF superfamily保守结构域,分子量为21.514 kD,理论等电点为9.16,不稳定系数41.12,属于不稳定蛋白。系统进化分析表明,ArCRC与水稻(Oryza sativa)的OsDL和拟南芥(Arabidopsis thaliana)的AtCRC聚为一类,属于CRC亚家族,且定位在细胞核。SDS-PAGE电泳和Western blot结果表明,ArCRC基因可在大肠杆菌中成功诱导表达。qRT-PCR分析表明,ArCRC基因在花的表达量最高,其次是叶,且在叶片中脉的表达量显著高于叶片外缘,因此,推测ArCRC基因主要在花器官发育中发挥功能,同时还参与调控叶片中脉的发育。

    Abstract:

    To understand the function of CRABS CLAW (CRC) subgene of the YABBY gene family of Anoectochilus roxburghii in flower and leaf development, the ArCRC gene was cloned by RT-PCR based on the full-length transcriptome data of A. roxburghii. The bioinformatics, prokaryotic expression and subcellular localization of encoded ArCRC protein were analyzed, and the expression pattern of ArCRC gene was analyzed by qPCR. The results showed that the CDS length of ArCRC gene was 576 bp (GenBank accession No.: OR394646), coding 191 amino acids. ArCRC contains YABBY superfamily and HMG-box_SF superfamily conserved domain, with molecular weight 21.514 kD, theoretical isoelectric point 9.16, instability coefficient 41.12, belonging to the unstable protein. Phylogenetic analysis showed that ArCRC was clustered with OsDL of rice (Oryza sativa) and AtCRC of Arabidopsis thaliana, belonging to the CRC subfamily and localized in the nucleus. SDS-PAGE electrophoresis and Western blot results showed that ArCRC gene could be successfully induced in Escherichia coli. qRT-PCR analysis showed that the expression of ArCRC gene was the highest in flowers, followed by leaves, and the expression in the midrib of leaves was significantly higher than that in the margin of leaves. Therefore, it was speculated that ArCRC gene mainly played a role in the development of flower organs and was also involved in regulating the development of the midrib of leaves.

    参考文献
    [1] CHEN Y, WANG W Y, CHEN S N, et al. Changes in kinsenoside content of different strains of Anoectochilus roxburghii at different growth periods [J]. Mod Chin Med, 2021, 23(8): 1423-1429. [陈莹, 王文义, 谌赛男, 等. 不同品系及生长期金线莲的金线莲苷含量变化研究 [J]. 中国现代中药, 2021, 23(8): 1423-1429. doi: 10.13313/ j.issn.1673‑4890.20200911001.]
    [2] XUE M H, LU S K, WENG W, et al. Effects of planting methods on the content of flavonoids in Anoectochilus roxburghii [J]. Fujian Anal Test, 2021, 30(1): 33-36. [薛梅花, 卢石孔, 翁文, 等. 不同种植方式对金线莲黄酮类化合物含量的影响 [J]. 福建分析测试, 2021, 30(1): 33-36. doi: 10.3969/j.issn.1009-8143.2021.01.07.]
    [3] CHEN C L, LI W L, AN X, et al. Effects of light intensities on polysaccharide and flavonoid contents in Anoectothenia roxburghii [J]. Mol Plant Breed, 2023, 21(15): 5103-5109. [陈常理, 李文略, 安霞, 等. 光照强度对金线莲多糖和黄酮类物质含量的影响 [J]. 分子植物育种, 2023, 21(15): 5103-5109. doi: 10.13271/j.mpb.021.005103.]
    [4] TANG F, ZHANG X Q, XU J T, et al. Screening on hypoglycemic effective part of Anoectochilus roxburghii [J]. Chin Trad Herb Drugs, 2011, 42(2): 340-342. [唐菲, 张小琼, 徐江涛, 等. 金线莲降血糖活性部位的筛选 [J]. 中草药, 2011, 42(2): 340-342.]
    [5] ZHANG X Y, YU X L, YE H H. Research progress on hepatoprotective effect and mechanism of Anoectochilus roxburghii (Wall.) Lindl. [J]. Mod Chin Med, 2022, 24(5): 920-925. [张晓颖, 俞晓玲, 叶寒辉. 金线莲保肝作用及作用机制研究进展 [J]. 中国现代中药, 2022, 24(5): 920-925. doi: 10.13313/j.issn.1673-4890.20210223004.]
    [6] LÜ J G, ZHANG H, ZHOU H H, et al. Effects of kinsenoside on the proliferation, migration and invasion of human hepatoma HepG2 cells [J]. J Hubei Univ Sci Technol (Med Sci), 2022, 36(1): 5-8. [吕建国, 张晗, 周荟慧, 等. 金线莲苷对人肝癌HepG2细胞增殖、迁移和侵袭的影响 [J]. 湖北科技学院学报(医学版), 2022, 36(1): 5-8. doi: 10. 16751/j.cnki.2095-4646.2022.01.005.]
    [7] XU S S, LI Y Q, FENG H M, et al. Study on the formulation optimization technology of ‘Hongxia’ Anoectochilus roxburghii tissue culture medium [J]. Anhui Agric Sci Bull, 2021, 27(24): 15-17. [徐双双, 李怡清, 冯慧敏, 等. ‘红霞’金线莲组培培养基配方优化技术研究 [J]. 安徽农学通报, 2021, 27(24): 15-17. doi: 10.3969/j.issn.1007-7731. 2021.24.005.]
    [8] SHI M R, LUO Y F. Study on the establishment and optimization of the sterile system of wild Anoectochilus roxburghii from eastern Fujian Province [J]. J Anhui Agric Sci, 2022, 50(7): 96-98. [施满容, 罗义发. 闽东野生金线莲无菌体系建立与优化研究 [J]. 安徽农业科学, 2022, 50(7): 96-98. doi: 10.3969/j.issn.0517-6611.2022.07.022.]
    [9] XING B C, SU L Y, WAN S Q, et al. Screening and cloning analysis of WRKY transcription factor regulating embryo development from Anoectochilus roxburghii [J]. Chin Trad Herb Drugs, 2022, 53(12): 37453754. [邢丙聪, 苏立样, 万思琦, 等. 金线莲中调控胚胎发育WRKY转录因子筛选及克隆分析 [J]. 中草药, 2022, 53(12): 37453754. doi: 10.7501/j.issn.0253-2670.2022.12.021.]
    [10] CHEN Y Q, LI Q J, LAI Z X, et al. Characteristics of calcium distribution in the developing anthers of Anoectochilus roxburghii [J]. Acta Bot Boreali-Occid Sin, 2021, 41(6): 977-983. [陈育青, 李秋静, 赖钟雄, 等. 金线莲花药发育中的钙离子分布特征 [J]. 西北植物学报, 2021, 41(6): 977-983. doi: 10.7606/j.issn.1000-4025.2021.06.0977.]
    [11] CHEN Y Q, HUANG Z H, LI Q J, et al. Microstructure of anther development of Anoectochilus roxburghii [J]. J Chin Elect Microsc Soc, 2021, 40(4): 425-431. [陈育青, 黄泽豪, 李秋静, 等. 福建濒危药用植物金线莲花药发育的形态观察 [J]. 电子显微学报, 2021, 40(4): 425-431. doi: 10.3969/j.issn.1000-6281.2021.04.011.]
    [12] CHEN Y Q, LIN H Q, LIN M Z, et al. Distribution characteristics of polysaccharides and lipids in the developing anther of Anoectochilus roxburghii [J]. Acta Bot Boreali-Occid Sin, 2020, 40(8): 1333-1338. [陈育青, 林汉钦, 林美珍, 等. 金线莲花药发育中多糖和脂滴的分布特征 [J]. 西北植物学报, 2020, 40(8): 1333-1338. doi: 10.7606/j. issn.1000-4025.2020.08.1333.]
    [13] BOWMAN J L, SMYTH D R. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains [J]. Development, 1999, 126(11): 2387-2396. doi: 10.1242/dev.126.11.2387.
    [14] SIEGFRIED K R, ESHED Y, BAUM S F, et al. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis [J]. Development, 1999, 126(18): 4117-4128. doi: 10.1242/dev.126.18.4117.
    [15] DONG H, LI Y X, WANG T K, et al. Genome-wide identification and expression analysis of YABBY gene family in rice [J]. Mol Plant Breed, 2020, 18(15): 4845-4854. [董皓, 李懿星, 王天抗, 等. 水稻YABBY家族的全基因组鉴定与表达分析 [J]. 分子植物育种, 2020, 18(15): 4845-4854. doi: 10.13271/j.mpb.018.004845.]
    [16] XU Y, QIAO Z L, ZHAO L, et al. Genome-wide and transcriptome analysis of YABBY family gene in Lotus (Nelumbo nucifera Gaertn.) [J]. Mol Plant Breed, 2022, 20(22): 7342-7353. [徐逸, 谯正林, 赵琳, 等. 荷花YABBY家族的全基因组和转录组分析 [J]. 分子植物育种, 2022, 20(22): 7342-7353. doi: 10.13271/j.mpb.020.007342.]
    [17] LIU X B, WANG S J, SUN J Y, et al. Identification and expression analysis of YABBY gene family in Panax ginseng C. A. Meyer [J]. J Chin Med Mat, 2021, 44(12): 2970-2975. [刘秀波, 王思嘉, 孙嘉莹, 等. 人参中YABBY基因家族鉴定与表达分析 [J]. 中药材, 2021, 44 (12): 2970-2975. doi: 10.13863/j.issn1001-4454.2021.12.044.]
    [18] ZHANG Z S, GONG M, WU D D, et al. Genome-wide characterization, expression profiles and alternative splicing events of YABBY family genes in Jatropha curcas [J]. J Trop Subtrop Bot, 2023, 31(2): 249-262. [张作胜, 龚明, 吴丹丹, 等. 小桐子YABBY全基因组家族成员的鉴定、表达和可变剪接分析 [J]. 热带亚热带植物学报, 2023, 31(2): 249-262. doi: 10.11926/jtsb.4570.]
    [19] ZHANG H T, XIAO X H, YANG J H, et al. Identification and expression analysis of YABBY gene family in Hevea brasiliensis [J]. Chin J Trop Crops, 2022, 43(11): 2188-2198. [张鸿韬, 肖小虎, 阳江华, 等. 巴西橡胶树YABBY基因家族鉴定及表达分析 [J]. 热带作物学报, 2022, 43(11): 2188-2198. doi: 10.3969/j.issn.1000-2561.2022.11.002.]
    [20] MIAO J Q, HUANG Y, NING R, et al. Bioinformatics analyses on YABBY gene family in Populus trichocarpa [J]. Mol Plant Breed, 2023, 21(10): 3245-3252. [苗嘉琪, 黄颖, 宁蕊, 等. 毛果杨YABBY基因家族生物信息学分析 [J]. 分子植物育种, 2023, 21(10): 3245-3252. doi: 10.13271/j.mpb.021.003245.]
    [21] ZHANG X Y, LIU X. Research progress of transcription factors and leaf development [J]. Plant Physiol J, 2022, 58(1): 91-100. [张雪莹, 刘欣. 转录因子与叶片发育的研究进展 [J]. 植物生理学报, 2022, 58(1): 91-100. doi: 10.13592/j.cnki.ppj.2021.0253.]
    [22] FOURQUIN C, PRIMO A, MARTÍNEZ-FERNÁNDEZ I, et al. The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development [J]. Ann Bot, 2014, 114(7): 1535-1544. doi: 10.1093/aob/mcu129.
    [23] STRABLE J, VOLLBRECHT E. Maize YABBY genes drooping leaf1 and drooping leaf2 regulate floret development and floral meristem determinacy [J]. Development, 2019, 146(6): dev171181. doi: 10.1242/ dev.171181.
    [24] CHE G, PAN Y P, LIU X F, et al. Natural variation in CRABS CLAW contributes to fruit length divergence in cucumber [J]. Plant Cell, 2023, 35(2): 738-755. doi: 10.1093/plcell/koac335.
    [25] TAMURA K, STECHER G, PETERSON D, et al. MEGA6: Molecular evolutionary genetics analysis version 6.0 [J]. Mol Biol Evol, 2013, 30(12): 2725-2729. doi: 10.1093/molbev/mst197.
    [26] LIN J B, WANG W Y, LI H M, et al. Cloning and expression analysis of NtPLATZ1 gene from Narcissus tazetta var. chinensis [J]. J NW A&F Univ (Nat Sci), 2016, 44(10): 165-170. [林江波, 王伟英, 李海明, 等. 中国水仙锌指蛋白NtPLATZ1的克隆与表达分析 [J]. 西北农林科技大学学报(自然科学版), 2016, 44(10): 165-170. doi: 10. 13207/j.cnki.jnwafu.2016.10.023.]
    [27] JIAO Y, QU M, GUI B B, et al. Prokaryotic expression and western blot identification of FUT10 protein in Crassostrea gigas [J]. J Food Saf Qual, 2022, 13(8): 2573-2579. [教杨, 曲梦, 桂彬彬, 等. 太平洋牡蛎中类FUT10蛋白的原核表达及免疫印迹鉴定 [J]. 食品安全质量检测学报, 2022, 13(8): 2573-2579. doi: 10.19812/j.cnki.jfsq115956/ts.2022.08.023.]
    [28] LIN J B, WANG W Y, ZOU H, et al. Expression stabilities of three housekeeping genes of Anoectochilus roxburghii [J]. Fujian J Agric Sci, 2018, 33(11): 1125-1129. [林江波, 王伟英, 邹晖, 等. 金线莲3个持家基因表达稳定性分析 [J]. 福建农业学报, 2018, 33(11): 11251129. doi: 10.19303/j.issn.1008-0384.2018.11.001.]
    [29] LIN J B, ZOU H, WANG W Y, et al. Cloning and expressions of LIS in Dendrobium officinale [J]. Fujian J Agric Sci, 2020, 35(10): 10711077. [林江波, 邹晖, 王伟英, 等. 铁皮石斛DoLIS基因克隆与茉莉酸甲酯诱导表达分析 [J]. 福建农业学报, 2020, 35(10): 1071-1077. doi: 10.19303/j.issn.1008-0384.2020.10.004.]
    [30] LEE J Y, BAUM S F, OH S H, et al. Recruitment of CRABS CLAW to promote nectary development within the eudicot clade [J]. Development, 2005, 132(22): 5021-5032. doi: 10.1242/dev.02067.
    [31] YAMAGUCHI T, NAGASAWA N, KAWASAKI S, et al. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa [J]. Plant Cell, 2004, 16(2): 500-509. doi: 10.1105/tpc.018044.
    [32] OHMORI Y, TORIBA T, NAKAMURA H, et al. Temporal and spatial regulation of DROOPING LEAF gene expression that promotes midrib formation in rice [J]. Plant J, 2011, 65(1): 77-86. doi: 10.1111/j.1365313X.2010.04404.x.
    [33] YANG T W, HE Y, NIU S B, et al. A YABBY gene CRABS CLAW a (CRCa) negatively regulates flower and fruit sizes in tomato [J]. Plant Sci, 2022, 320: 111285. doi: 10.1016/j.plantsci.2022.111285.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

林江波,邹晖,黄惠明,李和平,戴艺民.金线莲ArCRC基因的克隆、亚细胞定位和表达分析[J].热带亚热带植物学报,2025,33(1):42~48

复制
分享
文章指标
  • 点击次数:29
  • 下载次数: 62
  • HTML阅读次数: 48
  • 引用次数: 0
历史
  • 收稿日期:2023-10-19
  • 最后修改日期:2023-12-12
  • 在线发布日期: 2025-02-18
文章二维码