亚热带常绿阔叶林林下不同生活型植物叶片生态化学计量特征
作者:
基金项目:

国家自然科学基金项目(31960241)资助


Leaf Ecological Stoichiometry in Understory Plants with Different Life Forms in a Subtropical Evergreen Broad-leaved Forest
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了探究林下植物多样性的形成和维持机制,该研究采用常规和系统发育比较方法对广西猫儿山亚热带常绿阔叶林林下乔木幼树、灌木、草本和藤本等不同生活型植物叶片生态化学计量特征及其与系统发育的关系进行研究。结果表明,叶片化学计量特征的系统发育信号(Blomberg’s K)值为0.020~0.183。叶片N、P含量以及C/P、P/Ca、K/Ca的系统发育信号显著,表明物种多样化过程中存在系统发育保守性。叶片C、N、K和Mg含量以及大多数计量比受到生活型的显著影响,藤本植物有最高的叶片N、K和Mg含量,而草本植物叶片C、Mg含量、C/N和C/P最低。这表明不同生活型植物在总体上对叶片营养元素含量的需求和比例存在差异。进化模型拟合分析表明,对不同生活型最优叶片生态化学计量特征值的稳定选择是最优的进化模型,这表明不同生活型植物在进化过程中选择了适应自身的最优叶片化学计量特征组合。此外,在进化过程中叶片化学计量特征之间存在密切的相关性。因此,物种多样化过程中存在的叶片生态化学计量特征系统发育保守性和最优化稳定选择共同推动了亚热带常绿阔叶林林下植物多样性的形成和维持。

    Abstract:

    To explore the formation and maintenance mechanisms of the understory plant diversity, the ecological stoichiometric characteristics of leaves of understory trees, shrubs, herbs and vines and their relationship with phylogeny were studied by conventional and phylogenetic comparison methods in Maoershan subtropical evergreen broad-leaved forest, Guangxi. The results showed that the phylogenetic signals (Blomberg’s K) of leaf stoichiometric characteristics ranged from 0.020 to 0.183. The contents of N and P and the phylogenetic signals of C/P, P/Ca and K/Ca in leaves were significant, indicating that phylogenetic conservation existed in the process of species diversification. The contents of C, N, K and Mg in leaves and most of stoichiometric ratios were significantly affected by life form. The contents of N, K and Mg in leaves of vines were the highest, while the contents of C, Mg, C/N and C/P in leaves of herb were the lowest, which indicated that there were differences in the requirement and proportion of nutrient elements in leaves of different life forms. The stable selection of the optimal ecological stoichiometric characteristic values of leaves of different life forms was the optimal evolutionary model, which indicated that plants of different life forms chose the optimal combination of leaf stoichiometric characteristics to adapt to themselves in the evolutionary process. In addition, there was a close correlation between the stoichiometric characteristics of leaves during evolution. Therefore, phylogenetic conservation of leaf ecological stoichiometric characteristics and optimal stable selection in the process of species diversification jointly promoted the formation and maintenance of understory plant diversity in subtropical evergreen broad-leaved forests.

    参考文献
    [1] STERNER R W, ELSER J J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere [M]. Princeton: Princeton University Press, 2002.
    [2] DENG J J, FANG S, FANG X M, et al. Forest understory vegetation study: Current status and future trends [J]. For Res, 2023, 3(1): 6. doi: 10.48130/fr-2023-0006.
    [3] BARTELS S F, CHEN H Y H. Interactions between overstorey and understorey vegetation along an overstorey compositional gradient [J]. J Veg Sci, 2013, 24(3): 543–552. doi: 10.1111/j.1654-1103.2012.01479.x.
    [4] DE LA RIVA E G, VILLAR R, PÉREZ-RAMOS I M, et al. Relationships between leaf mass per area and nutrient concentrations in 98 Mediterranean woody species are determined by phylogeny, habitat and leaf habit [J]. Trees, 2018, 32(2): 497–510. doi: 10.1007/s00468017-1646-z.
    [5] PEÑUELAS J, SARDANS J, OGAYA R, et al. Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: Effect of simulated climate change [J]. Pol J Ecol, 2008, 56(4): 613–622.
    [6] PEÑUELAS J, FERNÁNDEZ-MARTÍNEZ M, CIAIS P, et al. The bioelements, the elementome, and the “biogeochemical niche” [J]. Ecology, 2019, 100(5): e02652. doi: 10.1002/ecy.2652.
    [7] BAI K D, LV S H, NING S J, et al. Leaf nutrient concentrations associated with phylogeny, leaf habit and soil chemistry in tropical karst seasonal rainforest tree species [J]. Plant Soil, 2019, 434(1/2): 305–326. doi: 10.1007/s11104-018-3858-4.
    [8] PEÑUELAS J, SARDANS J, LLUSIÀ J, et al. Faster returns on ‘leaf economics’ and different biogeochemical niche in invasive compared with native plant species [J]. Glob Chang Biol, 2010, 16(8): 2171–2185. doi: 10.1111/j.1365-2486.2009.02054.x.
    [9] SARDANS J, ALONSO R, CARNICER J, et al. Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain [J]. Perspect Plant Ecol Evol Syst, 2016, 18: 52–69. doi: 10.1016/j. ppees.2016.01.001.
    [10] SARDANS J, JANSSENS I A, ALONSO R, et al. Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions [J]. Glob Ecol Biogeogr, 2015, 24(2): 240–255. doi: 10.1111/geb.12253.
    [11] REVELL L J, HARMON L J, COLLAR D C. Phylogenetic signal, evolutionary process, and rate [J]. Syst Biol, 2008, 57(4): 591–601. doi: 10.1080/10635150802302427.
    [12] COOPER N, JETZ W, FRECKLETON R P. Phylogenetic comparative approaches for studying niche conservatism [J]. J Evol Biol, 2010, 23(12): 2529–2539. doi: 10.1111/j.1420-9101.2010.02144.x.
    [13] FERNÁNDEZ-MARTÍNEZ M, LLUSIÀ J, FILELLA I, et al. Nutrientrich plants emit a less intense blend of volatile isoprenoids [J]. New Phytol, 2018, 220(3): 773–784. doi: 10.1111/nph.14889.
    [14] BAI K D, WEI Y G, ZHANG D N, et al. Contrasting effects of light, soil chemistry and phylogeny on leaf nutrient concentrations in cavedwelling plants [J]. Plant Soil, 2020, 448(1): 105–120. doi: 10.1007/ s11104-020-04422-6.
    [15] BAI K D, ZHOU X W, LÜ S H, et al. Biogeochemical niche conservatism relates to plant species diversification and life form evolution in a subtropical montane evergreen broad-leaved forest [J]. Ecol Evol, 2022, 12(12): e9587. doi: 10.1002/ece3.9587.
    [16] WIGLEY B J, SLINGSBY J A, DÍAZ S, et al. Leaf traits of African woody savanna species across climate and soil fertility gradients: Evidence for conservative versus acquisitive resource-use strategies [J]. J Ecol, 2016, 104(5): 1357–1369. doi: 10.1111/1365-2745.12598.
    [17] TAYLOR A, WEIGELT P, DENELLE P, et al. The contribution of plant life and growth forms to global gradients of vascular plant diversity [J]. New Phytol, 2023, 240(4): 1548–1560. doi: 10.1111/nph.19011.
    [18] BAI K D, HE C X, WAN X C, et al. Leaf economics of evergreen and deciduous tree species along an elevational gradient in a subtropical mountain [J]. AoB Plants, 2015, 7: plv064. doi: 10.1093/aobpla/plv064.
    [19] JIN Y, QIAN H. V. PhyloMaker: An R package that can generate very large phylogenies for vascular plants [J]. Ecography, 2019, 42(8): 1353–1359. doi: 10.1111/ecog.04434.
    [20] BLOMBERG S P, GARLAND T JR, IVES A R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile [J]. Evolution, 2003, 57(4): 717–745. doi: 10.1111/j.0014-3820.2003.tb00285.x.
    [21] KECK F, RIMET F, BOUCHEZ A, et al. Phylosignal: An R package to measure, test, and explore the phylogenetic signal [J]. Ecol Evol, 2016, 6(9): 2774–2780. doi: 10.1002/ece3.2051.
    [22] HARMON L J, WEIR J T, BROCK C D, et al. GEIGER: Investigating evolutionary radiations [J]. Bioinformatics, 2008, 24(1): 129–131. doi: 10.1093/bioinformatics/btm538.
    [23] ORME D, FRECKLETON R P, THOMAS G H, et al. Caper: Comparative analyses of phylogenetics and evolution in R [J]. Methods Ecol Evol, 2012, 3: 145–151.
    [24] MCCORMACK M L, KAPROTH M A, CAVENDER-BARES J, et al. Climate and phylogenetic history structure morphological and architectural trait variation among fine-root orders [J]. New Phytol, 2020, 228(6): 1824–1834. doi: 10.1111/nph.16804.
    [25] YAN K, FU D G, HE F, et al. Leaf nutrient stoichiometry of plants in the phosphorus-enriched soils of the Lake Dianchi watershed, southwestern China [J]. Chin J Plant Ecol, 2011, 35(4): 353–361. [阎凯, 付登高, 何峰, 等. 滇池流域富磷区不同土壤磷水平下植物叶片的养分化学计量特征[J]. 植物生态学报, 2011, 35(4): 353–361. doi: 10. 3724/SP.J.1258.2011.00353.]
    [26] SAURA-MAS S, LLORET F. Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different postfire regenerative strategies [J]. Ann Bot, 2007, 99(3): 545–554. doi: 10. 1093/aob/mcl284.
    [27] SPICER M E, RADHAMONI H V N, DUGUID M C, et al. Herbaceous plant diversity in forest ecosystems: Patterns, mechanisms, and threats [J]. Plant Ecol, 2022, 223(2): 117–129. doi: 10.1007/s11258021-01202-9.
    [28] FUNK J L, AMATANGELO K L. Physiological mechanisms drive differing foliar calcium content in ferns and angiosperms [J]. Oecologia, 2013, 173(1): 23–32. doi: 10.1007/s00442-013-2591-1.
    [29] NEUGEBAUER K, BROADLEY M R, EL-SEREHY H A, et al. Variation in the angiosperm ionome [J]. Physiol Plant, 2018, 163(3): 306–322. doi: 10.1111/ppl.12700.
    [30] KIRKBY E A. Introduction, definition, and classification of nutrients [M]// Marschner’s Mineral Nutrition of Plants. Netherlands: Academic Press, 2023: 3–9. doi: 10.1016/b978-0-12-819773-8.00016-2.
    [31] WHITE P J, BROWN P H. Plant nutrition for sustainable development and global health [J]. Ann Bot, 2010, 105(7): 1073–1080. doi: 10.1093/ aob/mcq085.
    [32] ZENG D H, CHEN G S. Ecological stoichiometry: A science to explore the complexity of living systems [J]. Acta Phytoecol Sin, 2005, 29(6): 1007–1019. [曾德慧, 陈广生. 生态化学计量学: 复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29(6): 1007–1019. doi: 10.17521/ cjpe.2005.0120.]
    [33] HUANG J J, WANG X H. Leaf nutrient and structural characteristics of 32 evergreen broad-leaved species [J]. J E China Norm Univ (Nat Sci), 2003(1): 92–97. [黄建军, 王希华. 浙江天童32种常绿阔叶树叶片的营养及结构特征[J]. 华东师范大学学报(自然科学版), 2003(1): 92–97. doi: 10.3969/j.issn.1000-5641.2003.01.016.]
    [34] WANG H B, XU X, YANG W Q, et al. The ecological stoichiometry of carbon, nitrogen and phosphorus in urban garden plants with different life forms and its response to typhoon Hagupit [J]. Acta Ecol Sin, 2021, 41(22): 8931–8938. [王怀宾, 胥晓, 杨万勤, 等. 城市园林不同生活型植物叶片碳、氮、磷生态化学计量特征及其对台风的响应[J]. 生态学报, 2021, 41(22): 8931–8938. doi: 10.5846/stxb202105271396.
    [35] ELSER J J, FAGAN W F, DENNO R F, et al. Nutritional constraints in terrestrial and freshwater food webs [J]. Nature, 2000, 408(6812): 578– 580. doi: 10.1038/35046058.
    [36] AERTS R, CHAPIN F S III. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns [M]// Advances in Ecological Research. New York: Academic Press, 1999, 30: 1–67. doi: 10.1016/s0065-2504(08)60016-1.
    [37] KOERSELMAN W, MEULEMAN A F M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation [J]. J Appl Ecol, 1996, 33(6): 1441–1450. doi: 10.2307/2404783.
    [38] CUI P X, SHEN Z H, FU P L, et al. Comparison of foliar element contents of plants from natural forests with different substrates in southern China [J]. Acta Ecol Sin, 2020, 40(24): 9148–9163. [崔培鑫, 申智骅, 付培立, 等. 中国南方生长于不同基质的天然林植物叶片元素含量特征比较[J]. 生态学报, 2020, 40(24): 9148–9163. doi: 10. 5846/stxb202001160138.]
    [39] SHOU J J, XUE Q H, WANG X Y, et al. Studies on affecting factors of leaf senescence phenology in a subtropical evergreen broad-leaved forest in Gutianshan, Zhejiang Province [J]. J Trop Subtrop Bot, 2023, 31(2): 181–191. [寿佳君, 薛乾怀, 王鑫洋, 等. 浙江古田山亚热带常绿阔叶林叶衰老物候影响因子研究[J]. 热带亚热带植物学报, 2023, 31(2): 181–191. doi: 10.11926/jtsb.4582.]
    [40] LI A G, CAI S F, LUO S Z, et al. C, N, and P stoichiometry for leaf litter of 62 woody species in a subtropical evergreen broadleaved forest [J]. Chin J Appl Ecol, 2023, 34(5): 1153–1160. [李澳归, 蔡世锋, 罗素珍, 等. 亚热带常绿阔叶林62种木本植物凋落叶碳氮磷化学计量特征[J]. 应用生态学报, 2023, 34(5): 1153–1160. doi: 10.13287/j. 1001-9332.202305.005.]
    [41] PAN X, CORNELISSEN J H C, ZHAO W W, et al. Experimental evidence that the Ornstein-Uhlenbeck model best describes the evolution of leaf litter decomposability [J]. Ecol Evol, 2014, 4(17): 3339– 3349. doi: 10.1002/ece3.1115.
    [42] XIANG W H, HUANG Z H, YAN W D, et al. Review on coupling of interactive functions between carbon and nitrogen cycles in forest ecosystems [J]. Acta Ecol Sin, 2006, 26(7): 2365–2372. [项文化, 黄志宏, 闫文德, 等. 森林生态系统碳氮循环功能耦合研究综述[J]. 生态学报, 2006, 26(7): 2365–2372. doi: 10.3321/j.issn:1000-0933.2006. 07.040.]
    [43] LIU X J, SHAN Q, LI Y Y. Leaf carbon, nitrogen and phosphorus stoichiometry in 72 understory plants species in Kanas taiga [J]. Ecol Environ Sci, 2020, 29(7): 1302–1309. [刘小菊, 单奇, 李园园. 喀纳斯泰加林林下72种植物叶片的碳、氮、磷化学计量特征[J]. 生态环境学报, 2020, 29(7): 1302–1309. doi: 10.16258/j.cnki.1674-5906. 2020.07.003.]
    [44] Rawat J, Pandey N, Saxena J. Role of potassium in plant photosynthesis, transport, growth and yield [M]// Iqbal N, Umar S. Role of Potassium in Abiotic Stress. Singapore: Springer, 2022: 1–14. doi: 10.1007/978-981-16-4461-0_1.
    [45] WHITE P J, BROADLEY M R, EL-SEREHY H A, et al. Linear relationships between shoot magnesium and calcium concentrations among angiosperm species are associated with cell wall chemistry [J]. Ann Bot, 2018, 122(2): 221–226. doi: 10.1093/aob/mcy062.
    [46] BENGTSSON J, FAGERSTRÖM T, RYDIN H. Competition and coexistence in plant communities [J]. Trends Ecol Evol, 1994, 9(7): 246–250. doi: 10.1016/0169-5347(94)90289-5.
    [47] PAN Y Q, DU Y J, CHEN W D, et al. Can plant phenology explain species coexistence: A case study in the subtropical evergreen broadleaved forest of Gutianshan, Zhejiang, China [J]. Sci Sin Vitae, 2020, 50(4): 362–372. [潘元琪, 杜彦君, 陈文德, 等. 植物物候是否能解释物种共存: 以浙江古田山亚热带常绿阔叶林为例[J]. 中国科学: 生命科学, 2020, 50(4): 362–372. doi: 10.1360/SSV-2019-0064.]
    [48] HANSEN T F. Stabilizing selection and the comparative analysis of adaptation [J]. Evolution, 1997, 51(5): 1341–1351. doi: 10.2307/2411186.
    [49] PAGEL M. Inferring the historical patterns of biological evolution [J]. Nature, 1999, 401(6756): 877–884. doi: 10.1038/44766.
    [50] DONOVAN L A, MAHERALI H, CARUSO C M, et al. The evolution of the worldwide leaf economics spectrum [J]. Trends Ecol Evol, 2011, 26(2): 88–95. doi: 10.1016/j.tree.2010.11.011.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

许雪晴,李文君,周雪雯,吕仕洪,白坤栋.亚热带常绿阔叶林林下不同生活型植物叶片生态化学计量特征[J].热带亚热带植物学报,2024,32(6):725~736

复制
分享
文章指标
  • 点击次数:72
  • 下载次数: 141
  • HTML阅读次数: 84
  • 引用次数: 0
历史
  • 收稿日期:2023-09-08
  • 最后修改日期:2023-11-15
  • 在线发布日期: 2024-12-12
文章二维码