马占相思人工林不同改造模式树种的生长和养分对磷添加的响应
作者:
基金项目:

国家自然科学基金项目(32101342);广东省林业科技创新项目(2019KJCX023);广东省重点领域研发计划项目(2022B1111230001)资助


Growth and Nutrient Response to Phosphorus Addition of Different Modified Tree Species in Acacia mangium Plantation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    马占相思(Acacia mangium)是华南地区重要的造林速生树种,但生长后期缺磷,成熟林效益低下,因此需要改造。在广东省龙眼洞林场的成熟马占相思人工林中采用2种林分改造模式[M1:海南红豆(Ormosia pinnata)+红锥(Castanopsis hystrix)+ 樟树(Cinnamomum camphora)+灰木莲(Magnolia glauca);M2:醉香含笑(Michelia macclurei)+竹节树(Carallia brachiata)+木荷(Schima superba)+壳菜果(Mytilaria laosensis)],并进行磷添加处理[对照(CK)、低磷(LP)、中磷(MP)和高磷(HP)],39个月后对改造树种的生长和叶片养分进行测定。结果表明,M1模式树种总生物量在MP最高,为29.91 kg,M2模式树种总生物量在HP最高,为29.98 kg。醉香含笑、竹节树和壳菜果的生物量在HP最高,分别为5.97、10.3和10.69 kg;海南红豆、红锥和灰木莲的生物量在MP最高,分别为5.12、6.91和11.46 kg,樟树的生物量在LP最高,为10.4 kg,木荷的生物量则在CK最高,为4.45 kg。M2模式树种叶片的平均磷含量显著高于M1,但其叶片平均N:P则显著低于M1。因此,磷添加不同程度增加了所有改造树种叶片的磷含量和降低了N:P,这为南亚热带成熟马占相思人工林的磷添加梯度和改造树种选择提供科学的参考。

    Abstract:

    Acacia mangium is an important fast-growing tree in South China, but mature forest shows phosphorus deficiency which may reduce forest efficiency, so it needs to be reconstructed. Phosphorus, including four levels as control treatment (CK), low phosphorus addition (LP), medium phosphorus addition (MP), and high phosphorus addition (HP), were added into two forest reconstruction mode, such as M1 (Ormosia pinnata + Castanopsis hystrix + Cinnamomum camphora + Magnolia glauca) and M2 (Michelia macclurei + Carallia brachiata + Schima superba + Mytilaria laosensis) in a mature A. mangium plantation of Longyandong Forestry Farm of Guangdong Province. The growth and leaf nutrients of the modified tree species were measured after 39 months. The results showed that the total biomass of M1 species was the highest in MP (29.91 kg), and that of M2 species was the highest in HP (29.98 kg). The biomass of Michelia macclurei, Carallia brachiata and Mytilaria laosensis was the highest in HP, which was 5.97, 10.3 and 10.69 kg, respectively. The biomass of Ormosia pinnata, Castanopsis hystrix and Magnolia glauca was the highest at MP (5.12, 6.91 and 11.46 kg, respectively), the biomass of Cinnamomum camphora was the highest at LP (10.4 kg), and the biomass of Schima superba was the highest at CK (4.45 kg). The average phosphorus content of leaves of M2 species was higher than that of M1, but the average N:P in leaves of M2 species was lower than that of M1. Therefore, the phosphorus addition increased the phosphorus content and decreased N:P in the leaves of all modified tree species, which provided a scientific reference for the phosphorus addition gradient and the selection of modified tree species in mature A. mangium plantations in South Asia.

    参考文献
    [1] YANG L, LIU N, REN H, et al. Facilitation by two exotic Acacia: Acacia auriculiformis and Acacia mangium as nurse plants in south China [J]. For Ecol Manage, 2009, 257(8): 1786–1793. doi: 10.1016/j. foreco.2009.01.033.
    [2] REN H, PENG S L, XIANG Y C. Biomass and net primary productivity in an Acacia mangium plantation in Heshan, Guangdong, China [J]. Acta Phytoecol Sin, 2000, 24(1): 18–21. [任海, 彭少麟, 向言词. 鹤山马占相思人工林的生物量和净初级生产力[J]. 植物生态学报, 2000, 24(1): 18–21. doi: 10.3321/j.issn:1005-264X.2000.01.004.]
    [3] XU D P, YANG Z J, HE Q X. Above ground biomass production and nutrient cycling of middle age plantation of Acacia mangium [J]. For Res, 1998, 11(6): 592–598. [徐大平, 杨曾奖, 何其轩. 马占相思中龄林地上部分生物量及养分循环的研究[J]. 林业科学研究, 1998, 11(6): 592–598. doi: 10.3321/j.issn:1001-1498.1998.06.006.]
    [4] HE B, QIN W M, YU H G, et al. Biological cycling of nutrients in different ages classes of Acacia mangium plantation [J]. Acta Ecol Sin, 2007, 27(12): 5158–5167. [何斌, 秦武明, 余浩光, 等. 不同年龄阶段马占相思(Acacia mangium)人工林营养元素的生物循环[J]. 生态学报, 2007, 27(12): 5158–5167. doi: 10.3321/j.issn:1000-0933.2007. 12.025.]
    [5] LIU S R, YANG Y J, WANG H. Development strategy and management countermeasures of planted forests in China: Transforming from timber-centered single objective management towards multi-purpose management for enhancing quality and benefits of ecosystem services [J]. Acta Ecol Sin, 2018, 38(1): 1–10. [刘世荣, 杨予静, 王晖. 中国人工林经营发展战略与对策: 从追求木材产量的单一目标经营转向提升生态系统服务质量和效益的多目标经营[J]. 生态学报, 2018, 38(1): 1–10. doi: 10.5846/stxb201712072201.]
    [6] QIU H B, LIU C X, YU T T, et al. Identification of QTL for acid phosphatase activity in root and rhizosphere soil of maize under low phosphorus stress [J]. Euphytica, 2014, 197(1): 133–143. doi: 10.1007/ s10681-013-1058-0.
    [7] FILIPPELLI G M. The global phosphorus cycle [J]. Rev Mineral Geochem, 2002, 48(1): 391–425. doi: 10.2138/rmg.2002.48.10.
    [8] WEI Y J, WANG J, DANG X H, et al. Contents and stoichiometric characteristics of C, N, P and K in leaves process of Nitraria tangutorum succession [J]. J CS Univ For Technol, 2021, 41(10): 102–110. [魏亚娟, 汪季, 党晓宏, 等. 白刺灌丛沙堆演化过程中叶片C、N、P、K含量及其生态化学计量的变化特征[J]. 中南林业科技大学学报, 2021, 41(10): 102–110. doi: 10.14067/j.cnki.1673-923x.2021.10. 012.]
    [9] LI Y, NIU S L, YU G R. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: A meta-analysis [J]. Glob Change Biol, 2016, 22(2): 934–943. doi: 10.1111/gcb.13125.
    [10] YANG Q. Effects of nitrogen deposition and phosphorus addition on the growth characteristics in Chinese fir seedlings [D]. Hangzhou: Zhejiang A&F University, 2020. [杨强. 氮沉降和磷添加对杉木幼苗生长特征的影响[D]. 杭州: 浙江农林大学, 2020. doi: 10.27756/ d.cnki.gzjlx.2020.000049.]
    [11] HE L Y, HU Z M, GUO Q, et al. Influence of nitrogen and phosphorus addition on the aboveground biomass in Inner Mongolia temperate steppe, China [J]. Chin J Appl Ecol, 2015, 26(8): 2291–2297. [何利元, 胡中民, 郭群, 等. 氮磷添加对内蒙古温带草地地上生物量的影响[J]. 应用生态学报, 2015, 26(8): 2291–2297. doi: 10.13287/j.10019332.2015.0050.]
    [12] YANG X X, REN F, ZHOU H K, et al. Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2014, 38(2): 159– 166. [杨晓霞, 任飞, 周华坤, 等. 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应[J]. 植物生态学报, 2014, 38(2): 159–166. doi: 10.3724/SP.J.1258.2014.00014.]
    [13] MCGRATH J F, COPELAND B, DUMBRELL I C. Magnitude and duration of growth and wood quality responses to phosphorus and nitrogen in thinned Pinus radiata in southern western Australia [J]. Aust For, 2003, 66(3): 223–230. doi: 10.1080/00049158.2003.10674916.
    [14] YE X M, BU W S, HU X F, et al. Species divergence in seedling leaf traits and tree growth response to nitrogen and phosphorus additions in an evergreen broadleaved forest of subtropical China [J]. J For Res, 2023, 34(1): 137–150. doi: 10.1007/s11676-021-01437-2.
    [15] FENG J G, ZHU B. A review on the effects of nitrogen and phosphorus addition on tree growth and productivity in forest ecosystems [J]. Chin J Plant Ecol, 2020, 44(6): 583–597. [冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583–597. doi: 10.17521/cjpe.2019.0176.]
    [16] ZHANGN Q, XIE J Y, NIU Y et al. Effects of different fertilization treatments on soil’s water conservation function of Chinese fir plantation [J]. J CS Univ For Technol, 2021, 41(2): 112–122. [张强, 谢君毅, 牛芸, 等. 不同施肥处理对杉木林土壤水源涵养功能的影响[J]. 中南林业科技大学学报, 2021, 41(2): 112–122. doi: 10.14067/j. cnki.1673-923x.2021.02.014.]
    [17] WANG H N, HUANG M Y, ZHANG S J, et al. Forest stand improvement and the amelioration of forest environment [J]. Guangdong For Sci Technol, 2007, 23(6): 82–87. [王华南, 黄敏怡, 张苏峻, 等. 林分改造与森林环境优化[J]. 广东林业科技, 2007, 23(6): 82–87. doi: 10.3969/j.issn.1006-4427.2007.06.019.]
    [18] WEI L Y, SHEN W J. Effects of introduced native tree species on plant community soil microbial and chemical properties in two subtropical degraded leguminous plantations in south China [J]. Res Soil Water Conserv, 2013, 20(6): 24–31. [韦兰英, 申卫军. 乡土树种改造豆科人工纯林对植物群落和土壤微生物学和化学属性的影响[J]. 水土保持研究, 2013, 20(6): 24–31.]
    [19] OUYANG S N, TIE L H, RAO X Q, et al. Mixed-species Acacia plantation decreases soil organic carbon and total nitrogen concentrations but favors species regeneration and tree growth over monoculture: A thirty-three-year field experiment in southern China [J]. Forests, 2023, 14(5): 968. doi: 10.3390/f14050968.
    [20] LOU S D. Mixed plantation merit and afforestation principle [J]. For Invest Des, 2009(1): 23–24. [娄胜德. 谈混交林优点及营造原则[J]. 林业勘查设计, 2009(1): 23–24.]
    [21] FANG Y R, LI J, XUE L. Impact of stand transformation on plant diversity and soil physical properties in Pinus caribaea stands [J]. J CS Univ For Technol, 2018, 38(6): 109–114. [方怡然, 李洁, 薛立. 不同林分改造模式对加勒比松林林下植物多样性和土壤物理性质的影响[J]. 中南林业科技大学学报, 2018, 38(6): 109–114. doi: 10. 14067/j.cnki.1673-923x.2018.06.017.]
    [22] MAO Y Y, CHEN F Q, GUO Y, et al. Restoration dynamics of understory species diversity in Castanopsis hystrix plantations at different ages [J]. Chin J Appl Environ Biol, 2021, 27(4): 930–937. [毛亦杨, 陈富强, 郭勇, 等. 不同林龄红锥人工林林下植被物种多样性恢复动态[J]. 应用与环境生物学报, 2021, 27(4): 930–937. doi: 10.19675/j. cnki.1006-687x.2020.11016.]
    [23] MAO Q G. Impacts of long-term nitrogen and phosphorus addition on understory plant diversity in subtropical forests in southern China [D]. Beijing: University of Chinese Academy of Sciences, 2016. [毛庆功. 长期氮磷添加对南亚热带森林林下层植物多样性的影响[D]. 北京: 中国科学院大学, 2016.]
    [24] ZHOU G Y, YIN G C, TANG X L, et al. Carbon storage of forest ecoystem in China: Biomass equation [M]. Beijing: Science Press, 2018: 78. [周国逸, 尹光彩, 唐旭利, 等. 中国森林生态系统碳储量——生物量方程[M]. 北京: 科学出版社, 2018: 78.]
    [25] LIU G S, JIANG N H, ZHANG L D, et al. Soil physical and chemical analysis & description of soil profiles [M]. Beijing: Standards Press of China, 1996. [刘光崧, 蒋能慧, 张连第, 等. 土壤理化分析与剖面描述[M]. 北京: 中国标准出版社, 1996.]
    [26] DU E Z, TERRER C, PELLEGRINI A F A, et al. Global patterns of terrestrial nitrogen and phosphorus limitation [J]. Nat Geosci, 2020, 13(3): 221–226. doi: 10.1038/s41561-019-0530-4.
    [27] JIANG L, TIAN D, MA S H, et al. The response of tree growth to nitrogen and phosphorus additions in a tropical montane rainforest [J]. Scie Total Environ, 2018, 618: 1064–1070. doi: 10.1016/j.scitotenv. 2017.09.099.
    [28] ALVAREZ-CLARE S, MACK M C, BROOKS M. A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest [J]. Ecology, 2013, 94(7): 1540–1551. doi: 10.1890/12-2128.1.
    [29] TIAN D, LI P, FANG W J, et al. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China [J]. Biogeosciences, 2017, 14(14): 3461–3469. doi: 10.5194/bg-14-34612017.
    [30] LI X, LIE Z Y, WU T, et al. Effect of warming on nutrients concentrations and stoichiometry of 4 tree species in south subtropical mixed forest [J]. Ecol Environ Sci, 2019, 28(5): 890–897. [李旭, 列志旸, 吴婷, 等. 增温对南亚热带混交林4个树种养分含量及化学计量的影响[J]. 生态环境学报, 2019, 28(5): 890–897. doi: 10.16258/j.cnki. 1674-5906.2019.05.005.]
    [31] HARRIS G. Ecological stoichiometry: Biology of elements from molecules to the biosphere [J]. J Plankton Res, 2003, 25(9): 1183. doi: 10. 1093/plankt/25.9.1183.
    [32] YANG H. Effects of nitrogen and phosphorus addition on leaf nutrient characteristics in a subtropical forest [J]. Trees, 2018, 32(2): 383–391. doi: 10.1007/s00468-017-1636-1.
    [33] YOU C M, PENG C H, XU Z F, et al. Nitrogen addition mediates the response of foliar stoichiometry to phosphorus addition: A meta-analysis [J]. Ecol Process, 2021, 10(1): 58. doi: 10.1186/s13717-021-00329-x.
    [34] ELSER J J, FAGAN W F, DENNO R F, et al. Nutritional constraints in terrestrial and freshwater food webs [J]. Nature, 2000, 408(6812): 578– 580. doi: 10.1038/35046058.
    [35] GAO Z B, WANG H Y, LÜ X T, et al. Effects of nitrogen and phosphorus addition on C:N:P stoichiometry in roots and leaves of four dominant plant species in a meadow steppe of Hulunbuir [J]. Chin J Ecol, 2017, 36(1): 80–88. [高宗宝, 王洪义, 吕晓涛, 等. 氮磷添加对呼伦贝尔草甸草原4种优势植物根系和叶片C:N:P化学计量特征的影响[J]. 生态学杂志, 2017, 36(1): 80–88. doi: 10.13292/j.10004890.201701.015.]
    [36] WANG J, HUI D F, LIU Z F, et al. Leaf nutrient resorption differs among canopy and understory plant species in subtropical Eucalyptus and Acacia plantations [J]. Land Degrad Dev 2022, 33(10): 1662–1676. doi: 10.1002/ldr.4254.
    [37] LIU J X, HUANG W J, ZHOU G Y, et al. Nitrogen to phosphorus ratios of tree species in response to elevated carbon dioxide and nitrogen addition in subtropical forests [J]. Glob Change Biol, 2013, 19(1): 208–216. doi: 10.1111/gcb.12022.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘德界,罗焓毓,程严,李旭,刘旭军,杨世福,陈富强,瞿超,刘菊秀,列志旸.马占相思人工林不同改造模式树种的生长和养分对磷添加的响应[J].热带亚热带植物学报,2024,32(6):737~746

复制
分享
文章指标
  • 点击次数:47
  • 下载次数: 117
  • HTML阅读次数: 81
  • 引用次数: 0
历史
  • 收稿日期:2023-08-26
  • 最后修改日期:2023-11-08
  • 在线发布日期: 2024-12-12
文章二维码