5种石灰岩特有植物根际土壤细菌群落特征和功能研究
作者:
基金项目:

广东省林业局科技项目(2023KJCX001)资助


Rhizosphere Bacterial Community Characteristics and Function of Five Limestone Endemic Plants
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解不同石灰岩特有植物根际土壤细菌群落的共性和差异,通过16S rDNA高通量测序和生物信息学方法,以分析5种广东石灰岩特有植物大桥虎耳草(Saxifraga daqiaoensis)、癞叶秋海棠(Begonia leprosa)、淡黄报春苣苔(Primulina alutacea)、多莛报春苣苔(P. polycephala)和阳山报春苣苔(P. yangshanensis)根际土细菌群落特征和功能。结果表明,5种植物根际土中共检测到细菌42门113纲250目315科498属,其中绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidetes)、放线菌门(Actinobacteria)、浮霉菌门(Planctomycetes)、变形菌门(Proteobacteria)和酸杆菌门(Acidobacteria)在5种植物根际土细菌群落中占绝对优势。速效磷、交换性钙、碱解氮、有机质、pH和全氮是影响细菌群落组成的主要因子。不同植物富集了不同的细菌类群,癞叶秋海棠的根际细菌群落结构组成与其他4种植物存在明显差异,根际细菌功能也存在差异。PICRUSt2功能预测表明5种植物根际细菌群落在新陈代谢功能方面最活跃,FAPROTAX功能预测表明化能异养型、好氧化能异养型、硝化作用型和好氧氨氧化型细菌是5种植物根际中共同的优势功能类群,对植物生长具有重要作用。这可为石灰岩特有植物引种驯化提供土壤微环境数据。

    Abstract:

    To understand the similarities and differences in the rhizosphere bacterial communities of different limestone endemic plants, five species of limestone endemic plants in northern Guangdong were studied, including Saxifraga daqiaoensis, Begonia leprosa, Primulina alutacea, P. polycephala and P. yangshanensis. The rhizosphere bacterial community characteristics and functional component of five limestone endemic plants were analysed by using high-throughput 16S rDNA sequencing and bioinformatics methods. The results showed that 42 phyla, 113 classes, 250 orders, 315 families, and 498 genera bacteria were detected in rhizosphere soil of five plants. Chloroflexi, Bacteroidetes, Actinobacteria, Planctomycetes, Proteobacteria and Acidobacteria were the dominant phyla. Heatmap analysis indicated that the soil physical and chemical factors, including available phosphorus, exchangeable calcium, ammonium nitrogen, soil organic matter, pondus hydrogenii and total nitrogen, played important roles in the composition of bacterial community. The LEfSe analysis showed that different plants enriched different rhizosphere bacterial population. The composition and function of the rhizosphere bacterial community of B. leprosa was significantly different from those of the other four plants. The prediction of PICRUSt2 function showed that the rhizosphere bacterial communities of five plants were the most active in metabolism. The function prediction of FARPOTAX showed that chemoheterotrophy, aerobic chemoheterotrophy, nitrification and aerobic ammonia oxidation were the common dominant functional population in the rhizosphere bacteria of five plants. These functional bacteria play an important role in helping plants grow and develop. It would provide soil microenvironment data for the introduction and domestication of endemic plants in limestone.

    参考文献
    [1] RAAIJMAKERS J M, PAULITZ T C, STEINBERG C, et al. The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms [J]. Plant Soil, 2009, 321(1): 341–361. doi: 10.1007/s11104-008-9568-6.
    [2] YUAN J, ZHAO J, WEN T, et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection [J]. Microbiome, 2018, 6(1): 156. doi: 10.1186/s40168-018-0537-x.
    [3] BANO S, WU X G, ZHANG X J. Towards sustainable agriculture: Rhizosphere microbiome engineering [J]. Appl Microbiol Biotechnol, 2021, 105(19): 7141–7160. doi: 10.1007/s00253-021-11555-w.
    [4] SONG Y, LI X N, YAO S, et al. Correlations between soil metabolomics and bacterial community structures in the pepper rhizosphere under plastic greenhouse cultivation [J]. Sci Total Environ, 2020, 728: 138439. doi: 10.1016/j.scitotenv.2020.138439.
    [5] TURNER T R, RAMAKRISHNAN K, WALSHAW J, et al. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants [J]. ISME J, 2013, 7(12): 2248–2258. doi: 10.1038/ismej.2013.119.
    [6] ZHENG T J, WANG M J. Research on the diversity and difference of rhizosphere microbial community of different blueberries [J]. N Hort, 2022(14): 76–86. [郑天骄, 王梦姣. 不同蓝莓根际微生物群落结构多样性及其差异[J]. 北方园艺, 2022(14): 76–86. doi: 10.11937/bfyy. 20220166.]
    [7] ZHANG G, ZHENG C Y, LI Y F, et al. Impact of ecological restoration of rocky desertification on soil biodiversity in karst area: A review [J]. Acta Ecol Sin, 2023, 43(1): 432–440. [张国, 郑春燕, 李钰飞, 等. 喀斯特地区石漠化生态修复对土壤生物多样性的影响[J]. 生态学报, 2023, 43(1): 432–440. doi: 10.5846/stxb202107081831.]
    [8] WANG K L, ZHANG C H, CHEN H S, et al. Karst landscapes of China: Patterns, ecosystem processes and services [J]. Landscape Ecol, 2019, 34(12): 2743–2763. doi: 10.1007/s10980-019-00912-w.
    [9] WU J, QIN F, WANG W, et al. Research progress of soil and peculiar plants in limestone areas of China [J]. J Jiangsu For Sci Technol, 2010, 37(2): 50–54. [吴静, 秦飞, 王维, 等. 我国石灰岩地区特有植物研究进展[J]. 江苏林业科技, 2010, 37(2): 50–54. doi: 10.3969/j.issn. 1001-7380.2010.02.015.]
    [10] WANG F G, YE Y S, XING F W. Saxifraga daqiaoensis (Saxifragaceae), a new species from Guangdong, China [J]. Ann Bot Fenn, 2008, 45(3): 237–239. doi: 10.5735/085.045.0313.
    [11] PAN B, WANG B M, HE J Y, et al. Primulina versicolor and P. alutacea spp. nov. (Gesneriaceae), two new species with yellow flowers from northern Guangdong, China [J]. Edinburgh J Bot, 2016, 73(1): 25–37. doi: 10.1017/S0960428615000268.
    [12] GUO J, PAN B, LIU J, et al. Three new species of Primulina (Gesneriaceae) from limestone karsts of China based on morphological and molecular evidence [J]. Bot Stud, 2015, 56(1): 34. doi: 10.1186/s40529-015-0115-5.
    [13] WANG H D, YUAN C J, YANG R, et al. Prediction of the potential suitable area of endemic plant Rhododendron pudingense in Guizhou Province based on MaxEnt model [J]. J S Agric, 2023, 54(3): 938–947. [王浩东, 袁丛军, 杨瑞, 等. 基于MaxEnt模型的贵州特有植物普定杜鹃花潜在适生区预测[J]. 南方农业学报, 2023, 54(3): 938–947. doi: 10.3969/j.issn.2095-1191.2023.03.030.]
    [14] LIU B Y, TANG H, WANG M L, et al. Seed germination and seedling growth and development characteristics of Llicicum difengpi, an endemic plant of karst region [J]. Seed, 2021, 40(1): 63–68. [刘宝玉, 唐辉, 王满莲, 等. 喀斯特特有植物地枫皮种子萌发及幼苗生长发育特性研究[J]. 种子, 2021, 40(1): 63–68. doi: 10.16590/j.cnki.10014705.2021.01.063.]
    [15] CHENG J, LIU J M, WANG D, et al. Plastic response of the karst endemic plant Juglans regia L. f. luodianense seedings to light intensity [J]. Chin J Appl Environ Biol, 2021, 27(1): 23–30. [程晶, 刘济明, 王灯, 等. 喀斯特特有植物罗甸小米核桃幼苗对光照强度的可塑性响应[J]. 应用与环境生物学报, 2021, 27(1): 23–30. doi: 10.19675/j. cnki.1006-687x.2020.09012.]
    [16] HE D Q, AO H X. The limestone hill forest vegetation in Guangdong Province and its recovery [J]. Trop Geogr, 1993, 13(3): 213–218. [何道泉, 敖惠修. 广东石灰岩地区的森林植被及其恢复问题[J]. 热带地理, 1993, 13(3): 213–218.]
    [17] LU H F, LASHARI M S, LIU X Y, et al. Changes in soil microbial community structure and enzyme activity with amendment of biocharmanure compost and pyroligneous solution in a saline soil from Central China [J]. Eur J Soil Biol, 2015, 70: 67–76. doi: 10.1016/j.ejsobi.2015. 07.005.
    [18] BAO S D. Soil Agrochemical Analysis [M]. 3rd ed. Beijing: China Agriculture Press, 2000: 1–495. [鲍士旦. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社, 2000: 1–495.]
    [19] MORI H, MARUYAMA F, KATO H, et al. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes [J]. DNA Res, 2014, 21(2): 217–227. doi: 10. 1093/dnares/dst052.
    [20] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: A flexible trimmer for Illumina sequence data [J]. Bioinformatics, 2014, 30(15): 2114–2120. doi: 10.1093/bioinformatics/btu170.
    [21] DOUGLAS G M, MAFFEI V J, ZANEVELD J R, et al. PICRUSt2 for prediction of metagenome functions [J]. Nat Biotechnol, 2020, 38(6): 685–688. doi: 10.1038/s41587-020-0548-6.
    [22] LOUCA S, PARFREY L W, DOEBELI M. Decoupling function and taxonomy in the global ocean microbiome [J]. Science, 2016, 353(6305): 1272–1277. doi: 10.1126/science.aaf4507.
    [23] CORDOVEZ V, DINI-ANDREOTE F, CARRIÓN V J, et al. Ecology and evolution of plant microbiomes [J]. Annu Rev Microbiol, 2019, 73(1): 69–88. doi: 10.1146/annurev-micro-090817-062524.
    [24] KONG H G, SONG G C, RYU C M. Inheritance of seed and rhizosphere microbial communities through plant-soil feedback and soil memory [J]. Environ Microbiol Rep, 2019, 11(4): 479–486. doi: 10. 1111/1758-2229.12760.
    [25] JING X Y, SUN L Q, LI S Y, et al. Rhizospheric microorganisms diversity analysis of Opisthopappus sp. [J]. J Agric Sci Technol, 2021, 23(3): 193–200. [景晓雅, 孙柳清, 李尚彧, 等. 太行菊属植物根际土壤微生物多样性初步研究[J]. 中国农业科技导报, 2021, 23(3): 193–200. doi: 10.13304/j.nykjdb.2019.0735.]
    [26] LI M Y, WANG J L, ZHOU Q, et al. Analysis on the rhizosphere fungal community structure of four halophytes in southern Xinjiang [J]. Acta Ecol Sin, 2021, 41(21): 8484–8495. [李明源, 王继莲, 周茜, 等. 南疆四种盐生植物根际土壤真菌群落结构特征[J]. 生态学报, 2021, 41(21): 8484–8495. doi: 10.5846/stxb202009032296.]
    [27] LI H, SU J Q, YANG X R, et al. Distinct rhizosphere effect on active and total bacterial communities in paddy soils [J]. Sci Total Environ, 2019, 649: 422–430. doi: 10.1016/j.scitotenv.2018.08.373.
    [28] ZHU P, CHEN R S, SONG Y X, et al. Soil bacterial community composition and diversity of four representative vegetation types in the middle section of the Qilian Mountains, China [J]. Acta Ecol Sin, 2017, 37(10): 3505–3514. [朱平, 陈仁升, 宋耀选, 等. 祁连山中部4种典型植被类型土壤细菌群落结构差异[J]. 生态学报, 2017, 37(10): 3505–3514. doi: 10.5846/stxb.201602290348.]
    [29] CHEN L, SONG T Q, WANG H, et al. Soil bacterial diversity and optimal sampling number in the Mulun karst evergreen and deciduous broad-leaved mixed forest [J]. Acta Ecol Sin, 2019, 39(9): 3287–3296. [陈莉, 宋同清, 王华, 等. 木论喀斯特常绿落叶阔叶混交林土壤细菌多样性及其最优采样数[J]. 生态学报, 2019, 39(9): 3287–3296. doi: 10.5846/stxb201711152038.]
    [30] LIU X, WANG S J, LIU X M, et al. Compositional characteristics and variations of soil microbial community in karst area of Puding County, Guizhou Province, China [J]. Earth Environ, 2015, 43(5): 490–497. [刘兴, 王世杰, 刘秀明, 等. 贵州喀斯特地区土壤细菌群落结构特征及变化[J]. 地球与环境, 2015, 43(5): 490–497. doi: 10.14050/j.cnki. 1672-9250.2015.05.002.]
    [31] SU D, BAO E Y, WANG J. Microbiome composition in rhizosphere and bulk soil of calciphilous plant Primulina tabacum [J]. J Agric Sci Technol, 2020, 22(10): 149–156. [苏迪, 鲍恩俣, 王进. 适钙植物报春苣苔根际土壤微生物群落结构[J]. 中国农业科技导报, 2020, 22(10): 149–156. doi: 10.13304/j.nykjdb.2019.0522.]
    [32] ZHANG C L, SHANG X R, ZHAO X, et al. Diversity and structure of rhizosphere bacteria community of Caragana korshinskii in the cold and dry area [J]. N Hort, 2021(17): 97–103. [张春林, 尚晓蕊, 赵鑫, 等. 寒旱区柠条根际细菌群落结构与多样性研究[J]. 北方园艺, 2021(17): 97–103. doi: 10.11937/bfyy.20210375.]
    [33] FU L J, LI X Q, FAN J H, et al. Analysis of rhizosphere soil bacterial community structure diversity and root characteristics of typical plants in alpine steppe of northern Xizang [J]. Atca Agrest Sin, 2022, 30(5): 1131–1140. [付莉娇, 李雪琴, 范继辉, 等. 藏北高寒草原典型植物根际土壤细菌群落结构多样性及根系特征分析[J]. 草地学报, 2022, 30(5): 1131–1140. doi: 10.11733/j.issn.1007-0435. 2022.05.013.]
    [34] DAI J X, TIAN P Y, ZHANG Y, et al. Rhizobacteria community structure and diversity of six salt-tolerant plants in Yinbei saline soil [J]. Acta Ecol Sin, 2019, 39(8): 2705–2714. [代金霞, 田平雅, 张莹, 等. 银北盐渍化土壤中6种耐盐植物根际细菌群落结构及其多样性[J]. 生态学报, 2019, 39(8): 2705–2714. doi: 10.5846/stxb201804240929.]
    [35] CHEN L, XIN X L, ZHANG J B, et al. Soil characteristics overwhelm cultivar effects on the structure and assembly of root-associated microbiomes of modern maize [J]. Pedosphere, 2019, 29(3): 360–373. doi: 10.1016/S1002-0160(17)60370-9.
    [36] TU Y L. A analysis of flora and Ecologicai characteristics of karst scrubs in Guizhou Province [J]. J Guizhou Norm Univ (Nat Sci), 1995, 13(3): 1–8. [屠玉麟. 贵州喀斯特灌丛区系与生态特征分析[J]. 贵州师范大学学报(自然科学版), 1995, 13(3): 1–8.]
    [37] LI X Z, RUI J P, XIONG J B, et al. Functional potential of soil microbial communities in the maize rhizosphere [J]. PLoS One, 2014, 9(11): e112609. doi: 10.1371/journal.pone.0112609.
    [38] NA X F, ZHENG G Q, PENG L, et al. Microbial biodiversity in rhizosphere of Lycium bararum L. relative to cultivation history [J]. Acta Pedol Sin, 2016, 53(1): 241–252. [纳小凡, 郑国琦, 彭励, 等. 不同种植年限宁夏枸杞根际微生物多样性变化[J]. 土壤学报, 2016, 53(1): 241–252. doi: 10.11766/trxb201503030643.]
    [39] SUN Y H, ZHAO Y H, KONG L Z L, et al. Effects of Suaeda glauca at different growth stages on bacterial community structure in the rhizosphere soil [J]. Chin J Grassland, 2022, 44(1): 78–86. [孙一航, 赵一航, 孔令泽来, 等. 不同生长时期碱蓬对根际土壤细菌群落结构的影响[J]. 中国草地学报, 2022, 44(1): 78–86. doi: 10.16742/j.zgcdxb. 20210175.]
    [40] GRIFFITHS R I, THOMSON B C, JAMES P, et al. The bacterial biogeography of British soils [J]. Environ Microbiol, 2011, 13(6): 1642–1654. doi: 10.1111/j.1462-2920.2011.02480.x.
    [41] RAHMAN M S, QUADIR Q F, RAHMAN A, et al. Screening and characterization of phosphorus solubilizing bacteria and their effect on rice seedlings [J]. Res Agric Livest Fish, 2015, 1(1): 27–35. doi: 10. 3329/ralf.v1i1.22353.
    [42] POLÓNIA A R M, CLEARY D F R, DUARTE L N, et al. Composition of archaea in seawater, sediment, and sponges in the Kepulauan Seribu reef system, Indonesia [J]. Microb Ecol, 2014, 67(3): 553–567. doi: 10. 1007/s00248-013-0365-2.
    [43] MA X, LUO Z Z, ZHANG Y Q, et al. Distribution characteristics and ecological function predictions of soil bacterial communities in rainfed alfalfa fields on the Loess Plateau [J]. Acta Pratacult Sin, 2021, 30(3): 54–67. [马欣, 罗珠珠, 张耀全, 等. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测[J]. 草业学报, 2021, 30(3): 54–67. doi: 10.11686/cyxb2020381.]
    [44] BROMKE M A. Amino acid biosynthesis pathways in diatoms [J]. Metabolites, 2013, 3(2): 294–311. doi: 10.3390/metabo3020294.
    [45] RIVETT D W, BELL T. Abundance determines the functional role of bacterial phylotypes in complex communities [J]. Nat Microbiol, 2018, 3(7): 767–772. doi: 10.1038/s41564-018-0180-0.
    [46] ZHANG R F, VIVANCO J M, SHEN Q R. The unseen rhizosphere root-soil-microbe interactions for crop production [J]. Curr Opin Microbiol, 2017, 37: 8–14. doi: 10.1016/j.mib.2017.03.008.
    [47] WANG Y Z, PAN T G, KE Y Q. Study and utilization on symbiotic relation between microbes and plants [J]. Chin J Eco-Agric, 2003, 11(3): 95–98. [王元贞, 潘廷国, 柯玉琴. 微生物与植物共生关系的研究及其利用[J]. 中国生态农业学报, 2003, 11(3): 95–98.]
    [48] WANG H, NIU D K, HU D N, et al. Effects of different fertilization on soil nitrogen and microbial community and function in Camellia oleiferaforest [J]. J Plant Nutr Fertil, 2014, 20(6): 1468–1476. [王华, 牛德奎, 胡冬南, 等. 不同肥料对油茶林土壤氮素含量、微生物群落及其功能的影响[J]. 植物营养与肥料学报, 2014, 20(6): 1468– 1476. doi: 10.11674/zwyf.2014.0617.]
    [49] XIAN W D, ZHANG X T, LI W J. Research status and prospect on bacterial phylum Chloroflexi [J]. Acta Microbiol Sin, 2020, 60(9): 1801– 1820. [鲜文东, 张潇橦, 李文均. 绿弯菌的研究现状及展望[J]. 微生物学报, 2020, 60(9): 1801–1820. doi: 10.13343/j.cnki.wsxb.20200463.]
    [50] ZHANG C L, ZHANG Y M, DING Z J, et al. Contribution of microbial inter-kingdom balance to plant health [J]. Mol Plant, 2019, 12(2): 148–149. doi: 10.1016/j.molp.2019.01.016.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张铭,梁键明,蒋庆莲,姜垒,吴玉芬,邵彦清,邵玲,唐光大.5种石灰岩特有植物根际土壤细菌群落特征和功能研究[J].热带亚热带植物学报,2024,32(6):757~771

复制
分享
文章指标
  • 点击次数:145
  • 下载次数: 105
  • HTML阅读次数: 92
  • 引用次数: 0
历史
  • 收稿日期:2023-08-23
  • 最后修改日期:2023-10-30
  • 在线发布日期: 2024-12-12
文章二维码