入侵植物飞机草和南美蟛蜞菊种子萌发特征对热带珊瑚岛生境的响应
作者:
基金项目:

国家重点研发计划项目(2021YFC3100403); 中国科学院重点部署项目(KGFZD-135-19-08)资助


Responses of Seed Germination Characteristics of Invasive Plants Eupatorium odoratum and Sphagneticola trilobata to Tropical Coral Island Habitat
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    入侵植物对热带珊瑚岛植被及生态系统产生严重威胁,研究热带珊瑚岛生境下入侵植物的种子萌发特征,可为预判入侵植物在热带珊瑚岛的扩张潜力提供科学依据。该研究以入侵植物飞机草(Eupatorium odoratum)、南美蟛蜞菊(Sphagneticola trilobata)和原生植物林泽兰(E. lindleyanum)种子为对象,通过“人为增温3 ℃+海砂基质+水”模拟热带珊瑚岛生境,测定种子萌发性状。结果表明:飞机草种子萌发性状主要受海砂基质和增温的影响;南美蟛蜞菊和林泽兰种子萌发性状则主要受海砂基质的影响。在热带珊瑚岛生境下,3种植物的繁殖潜力均显著低于大陆生境,飞机草和南美蟛蜞菊繁殖潜力降幅尤为显著。飞机草种子扩张潜力与林泽兰相当,但南美蟛蜞菊种子扩张潜力显著高于林泽兰。虽然飞机草和南美蟛蜞菊被人为带入热带珊瑚岛后的繁殖潜力有所下降,但其种子萌发特征对珊瑚岛生境的适应性和高于原生物种的扩张潜力均表明这2种入侵植物将对珊瑚岛植被生态系统造成威胁,在今后的研究中应当着重关注热带珊瑚岛生境入侵植物的防控工作。

    Abstract:

    Invasive plants pose a serious threat to the vegetation ecosystem on tropical coral islands. Studying the seed germination characteristics of invasive plants in tropical coral island habitats can provide scientific basis for predicting the expansion potential of invasive plants on tropical coral islands. The seed germination characteristics of invasive species Eupatorium odoratum, Sphagneticola trilobata, and coral island native species E. lindleyanum were compared under the simulated tropical coral island habitat via "3 ℃ warming + marine sand matrix + water". The results showed that the seed germination traits of E. odoratum were mainly affected by marine sand matrix and elevated temperature, while those of S. trilobata and E. lindleyanum were mainly affected by marine sand matrix. In tropical coral island habitats, the reproductive potential of the three plants was significantly lower than that in mainland habitats, in particular for E. odoratum and S. trilobata. The seed expansion potential of E. odoratum was similar to that of E. lindleyanum, but S. trilobata had higher seed expansion potential than E. lindleyanum. Although the reproductive potential of E. odoratum and S. trilobata decreased after being introduced into tropical coral island, the adaptability of their seed germination characteristics to the habitat and the expansion potential of invasive plants were higher than that of native species, indicating that the two invasive plants would pose a threat to the vegetation ecosystem of the tropical coral islands. In the future, it should be focused on the prevention and control of invasive plants in tropical coral islands.

    参考文献
    [1] GONG Z T, ZHANG G L, YANG F. Soils and the soil ecosystem in the South China Sea Islands[J]. Ecol Environ Sci, 2013, 22(2): 183-188. 龚子同, 张甘霖, 杨飞. 南海诸岛的土壤及其生态系统特征[J]. 生态环境学报, 2013, 22(2): 183-188. doi: 10.16258/j.cnki.1674-5906.2013.02.011.
    [2] WANG R. Analysis characteristic and quality evaluation of soil environment in Xisha Islands[D]. Haikou: Hainan University, 2011. 王瑞. 西沙群岛土壤环境特征分析及质量评价[D]. 海口: 海南大学, 2011.
    [3] SUN Z X. Engineering properties of coral sands in Nansha islands[J]. Trop Oceanogr, 2000, 19(2): 1-8. 孙宗勋. 南沙群岛珊瑚砂工程性质研究[J]. 热带海洋, 2000, 19(2): 1-8. doi: 10.3969/j.issn.1009-5470.2000.02.001.
    [4] JIAN S G. Vegetation of tropical coral islands in China[J]. Guihaia, 2020, 40(3): 443. 简曙光. 中国热带珊瑚岛植被[J]. 广西植物, 2020, 40(3): 443.
    [5] LIAO M C, LIU N, JIAN S G. Ecophysiological adaptability of Chromolaena odorata to tropical coral islands[J]. Guihaia, 2021, 41(6): 905-913. 廖蒙承, 刘楠, 简曙光. 飞机草对热带珊瑚岛的生理生态适应性[J]. 广西植物, 2021, 41(6): 905-913. doi: 10.11931/guihaia.gxzw202009050.
    [6] REN H, JIAN S G, ZHANG Q M, et al. Plants and vegetation on South China Sea Islands[J]. Ecol Environ Sci, 2017, 26(10): 1639-1648. 任海, 简曙光, 张倩媚, 等. 中国南海诸岛的植物和植被现状[J]. 生态环境学报, 2017, 26(10): 1639-1648. doi: 10.16258/j.cnki.1674-5906.2017.10.001.
    [7] MACDOUGALL A S, GILBERT B, LEVINE J M. Plant invasions and the niche[J]. J Ecol, 2009, 97(4): 609-615. doi: 10.1111/j.1365-2745.2009.01514.x.
    [8] INDERJIT, SIMBERLOFF D, KAUR H, et al. Novel chemicals engender myriad invasion mechanisms[J]. New Phytol, 2021, 232(3): 1184-1200. doi: 10.1111/nph.17685.
    [9] RATHEE S, AHMAD M, SHARMA P, et al. Biomass allocation and phenotypic plasticity are key elements of successful invasion of Parthenium hysterophorus at high elevation[J]. Environ Exp Bot, 2021, 184: 104392. doi: 10.1016/j.envexpbot.2021.104392.
    [10] LI Y P, FENG Y L, BARCLAY G. No evidence for evolutionarily decreased tolerance and increased fitness in invasive Chromolaena odorata: Implications for invasiveness and biological control[J]. Plant Ecol, 2012, 213(7): 1157-1166. doi: 10.1007/s11258-012-0073-x.
    [11] JESCHKE J M. General hypotheses in invasion ecology[J]. Divers Distrib, 2014, 20(11): 1229-1234. doi: 10.1111/ddi.12258.
    [12] HIERRO J L, MARON J L, CALLAWAY R M. A biogeographical approach to plant invasions: The importance of studying exotics in their introduced and native range[J]. J Ecol, 2005, 93(1): 5-15. doi: 10.1111/j.0022-0477.2004.00953.x.
    [13] CHYTRÝ M, JAROŠÍK V, PYŠEK P, et al. Separating habitat invasibility by alien plants from the actual level of invasion[J]. Ecology, 2008, 89(6): 1541-1553. doi: 10.1890/07-0682.1.
    [14] CATFORD J A, JANSSON R, NILSSON C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework[J]. Divers Distrib, 2009, 15(1): 22-40. doi: 10.1111/j.1472-4642.2008.00521.x.
    [15] ZHOU L F, YU H W, YANG K W, et al. Latitudinal and longitudinal trends of seed traits indicate adaptive strategies of an invasive plant[J]. Front Plant Sci, 2021, 12: 657813. doi: 10.3389/fpls.2021.657813.
    [16] ZHOU X H, HE W M. Climate warming facilitates seed germination in native but not invasive Solidago canadensis populations[J]. Front Ecol Evol, 2020, 8: 595214. doi: 10.3389/fevo.2020.595214.
    [17] DONOHUE K, RUBIO DE CASAS R, BURGHARDT L, et al. Germination, postgermination adaptation, and species ecological ranges[J]. Annu Rev Ecol Evol Syst, 2010, 41: 293-319. doi: 10.1146/annurev-ecolsys-102209-144715.
    [18] FINCH-SAVAGE W E, FOOTITT S. Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments[J]. J Exp Bot, 2017, 68(4): 843-856. doi: 10.1093/jxb/erw477.
    [19] VALLIERE J M, ESCOBEDO E B, BUCCIARELLI G M, et al. Invasive annuals respond more negatively to drought than native species[J]. New Phytol, 2019, 223(3): 1647-1656. doi: 10.1111/nph.15865.
    [20] BRADLEY B A, BLUMENTHAL D M, WILCOVE D S, et al. Predicting plant invasions in an era of global change[J]. Trends Ecol Evol, 2010, 25(5): 310-318. doi: 10.1016/j.tree.2009.12.003
    [21] ARAGÓN-GASTÉLUM J L, FLORES J, JURADO E, et al. Potential impact of global warming on seed bank, dormancy and germination of three succulent species from the Chihuahuan Desert[J]. Seed Sci Res, 2018, 28(4): 312-318. doi: 10.1017/S0960258518000302.
    [22] REN G Q, YANG H Y, LI J, et al. The effect of nitrogen and temperature changes on Solidago canadensis phenotypic plasticity and fitness[J]. Plant Spec Biol, 2020, 35(4): 283-299. doi: 10.1111/1442-1984.12280.
    [23] LIU Y J, ODUOR A M O, ZHANG Z, et al. Do invasive alien plants benefit more from global environmental change than native plants?[J]. Glob Chang Biol, 2017, 23(8): 3363-3370. doi: 10.1111/gcb.13579.
    [24] DENG Y Q, YUAN F, FENG Z T, et al. Comparative study on seed germination characteristics of two species of Australia saltbush under salt stress[J]. Acta Ecol Sin, 2014, 34(6): 337-341. doi: 10.1016/j.chnaes.2013.07.011.
    [25] FENG Y Q, WANG P W, QU J, et al. Effects of different germinating beds and storage time on germinability of maize[J]. Mol Plant Breed, 2018, 16(2): 565-571. 冯咏琪, 王丕武, 曲静, 等. 不同发芽床和贮藏时间对玉米发芽力的影响[J]. 分子植物育种, 2018, 16(2): 565-571. doi: 10.13271/j.mpb.016.000565.
    [26] WANG S N, SUN J, GUO J Y, et al. Overview of seed germination indices and their determination methods[J]. J Trit Crop, 2023, 43(2): 190-196. 王朔楠, 孙静, 郭嘉莹, 等. 种子发芽指标及其测算方法[J]. 麦类作物学报, 2023, 43(2): 190-196. doi: 10.7606/j.issn.1009-1041.2023.02.08.
    [27] XIAO H W, XIAO H Y, ZHANG Z Y, et al. Chemical characteristics and source apportionment of atmospheric precipitation in Yongxing Island[J]. Chin Environ Sci, 2016, 36(11): 3237-3244. 肖红伟, 肖化云, 张忠义, 等. 西沙永兴岛大气降水化学特征及来源分析[J]. 中国环境科学, 2016, 36(11): 3237-3244. doi: 10.3969/j.issn.1000-6923.2016.11.005.
    [28] WU B X. The primary studies on Eupatorium odoratum community in southern Yunnan[J]. Acta Bot Yunnan, 1982, 4(2): 177-184. 吴邦兴. 滇南飞机草群落的初步研究[J]. 云南植物研究, 1982, 4(2): 177-184.
    [29] WU Y Q, HU Y J, CHEN J N. Reproductive characteristics of alien plant Wedelia trilobata[J]. Acta Sci Nat Univ Sunyatseni, 2005, 44(6): 93-96. 吴彦琼, 胡玉佳, 陈江宁. 外来植物南美蟛蜞菊的繁殖特性[J]. 中山大学学报(自然科学版), 2005, 44(6): 93-96. doi: 10.3321/j.issn:0529-6579.2005.06.025.
    [30] Editorial Committee of Flora of China, Chinese Academy of Sciences. Flora Reipublicae Popularis Sinicae[M]. Beijing: Science Press, 1985, 74: 59-60. 中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1985, 74: 59-60.
    [31] MAO P L, GUO L M, GAO Y X, et al. Effects of seed size and sand burial on germination and early growth of seedlings for coastal Pinus thunbergii Parl. in the Northern Shandong Peninsula, China[J]. Forests, 2019, 10(3): 281. doi: 10.3390/f10030281.
    [32] QUAN G M, MAO D J, ZHANG J E, et al. Reproductive capacity and seed germination characteristics of Chromolaena odorata[J]. Ecol Environ Sci, 2011, 20(1): 72-78. 全国明, 毛丹鹃, 章家恩, 等. 飞机草的繁殖能力与种子的萌发特性[J]. 生态环境学报, 2011, 20(1): 72-78. doi: 10.3969/j.issn.1674-5906.2011.01.012.
    [33] KATO-NOGUCHI H, KATO M. Evolution of the secondary metabolites in invasive plant species Chromolaena odorata for the defense and Allelopathic functions[J]. Plants, 2023, 12(3): 521. doi: 10.3390/plants12030521.
    [34] CHENG H Y, WANG S, WEI M, et al. Reproductive allocation of Solidago canadensis L. plays a key role in its invasiveness across a gradient of invasion degrees[J]. Popul Ecol, 2021, 63(4): 290-301. doi: 10.1002/1438-390X.12091.
    [35] QI S S. The main physiological and ecological mechanism of the notorious invasive plant Wedelia trilobata choosing asexual reproducetion[D]. Zhenjiang: Jiangsu University, 2014. 祁珊珊. 入侵植物南美蟛蜞菊无性繁殖策略选择的主要生理生态机制[D]. 镇江: 江苏大学, 2014.
    [36] COLAUTTI R I, GRIGOROVICH I A, MACISAAC H J. Propagule pressure: A null model for biological invasions[J]. Biol Invasions, 2006, 8(5): 1023-1037. doi: 10.1007/s10530-005-3735-y.
    [37] RADFORD I J, COUSENS R D. Invasiveness and comparative life-history traits of exotic and indigenous Senecio species in Australia[J]. Oecologia, 2000, 125(4): 531-542. doi: 10.1007/s004420000474.
    [38] GIORIA M, PYŠEK P. Early bird catches the worm: Germination as a critical step in plant invasion[J]. Biol Invasions, 2017, 19(4): 1055-1080. doi: 10.1007/s10530-016-1349-1.
    [39] SOPER G N L, WINKLER K J, JAHNKE M R, et al. Geographic patterns of seed mass are associated with climate factors, but relationships vary between species[J]. Am J Bot, 2016, 103(1): 60-72. doi: 10.3732/ajb.1500295.
    [40] FLETCHER R A, VAMON K M, BARNEY J N. Climate drives differences in the germination niche of a globally distributed invasive grass[J]. J Plant Ecol, 2020, 13(2): 195-203. doi: 10.1093/jpe/rtz062.
    [41] CHEN W, WANG J H, CHEN D S, et al. Responses of seed germination of five Asteraceae species to temperature and their invasivity[J]. Chin J Ecol, 2015, 34(2): 420-424. 陈文, 王桔红, 陈丹生, 等. 五种菊科植物种子萌发对温度的响应及其入侵性[J]. 生态学杂志, 2015, 34(2): 420-424. doi: 10.13292/j.1000-4890.2015.0059.
    [42] GAO R R, WEI X Y, HE Z, et al. Soil salt and NaCl have different effects on seed germination of the halophyte Suaeda salsa[J]. J Plant Nutr Soil Sci, 2018, 181(4): 488-497. doi: 10.1002/jpln.201700544.
    [43] WANG X Y, ZHOU Y P, XUE Y F, et al. Seed germination characteristics of Spartina alterniflora from high and low latitude populations in relation to temperature[J]. Chin J Ecol, 2021, 40(9): 2763-2772. 汪秀岩, 周宇鹏, 薛雨霏, 等. 高低纬度种源互花米草种子萌发特性及其对温度的响应[J]. 生态学杂志, 2021, 40(9): 2763-2772. doi: 10.13292/j.1000-4890.202109.007.
    [44] KRITICOS D J, YONOW T, MCFADYEN R E. The potential distribution of Chromolaena odorata (Siam weed) in relation to climate[J]. Weed Res, 2005, 45(4): 246-254. doi: 10.1111/j.1365-3180.2005.00458.x.
    [45] LU P, BAI Y M, XIAO T Y, et al. Effects of environmental factors on germination and emergence of Siam weed (Chromolaena odorata)[J]. Procedia Environ Sci, 2011, 10: 1741-1746. doi: 10.1016/j.proenv.2011.09.273.
    [46] DAVIDSON A M, JENNIONS M, NICOTRA A B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis[J]. Ecol Lett, 2011, 14(4): 419-431. doi: 10.1111/j.1461-0248.2011.01596.x.
    [47] XU X Y, WOLFE L, DIEZ J, et al. Differential germination strategies of native and introduced populations of the invasive species Plantago virginica[J]. NeoBiota, 2019, 43: 101-118. doi: 10.3897/neobiota.43.30392.
    [48] GODOY O, LEVINE J M. Phenology effects on invasion success: Insights from coupling field experiments to coexistence theory[J]. Ecology, 2014, 95(3): 726-736. doi: 10.1890/13-1157.1.
    [49] GIORIA M, PYŠEK P. The legacy of plant invasions: Changes in the soil seed bank of invaded plant communities[J]. BioScience, 2016, 66(1): 40-53. doi: 10.1093/biosci/biv165.
    [50] WITKOWSKI E T F, WILSON M. Changes in density, biomass, seed production and soil seed banks of the non-native invasive plant, Chromolaena odorata, along a 15 year chronosequence[J]. Plant Ecol, 2001, 152(1): 13-27. doi: 10.1023/A:1011409004004.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙彰镁,旷远文,王俊,简曙光,张玲玲.入侵植物飞机草和南美蟛蜞菊种子萌发特征对热带珊瑚岛生境的响应[J].热带亚热带植物学报,2023,31(6):757~765

复制
分享
文章指标
  • 点击次数:193
  • 下载次数: 950
  • HTML阅读次数: 297
  • 引用次数: 0
历史
  • 收稿日期:2023-06-25
  • 在线发布日期: 2023-11-24
  • 出版日期: 2023-11-20
文章二维码