杉木和米槠人工林细根形态对短期氮和磷添加的可塑性响应
作者:
基金项目:

国家重点研发计划项目(2021YFD220040303)资助


Plasticity Response of Fine Root Morphological Traits to Short-term Nitrogen and Phosphorus Addition in Subtropical Cunninghamia lanceolata and Castanopsis carleisii Plantations
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    以福建三明地区林龄相似的丛枝菌根树种杉木(Cunninghamia lanceolata)人工林和外生菌根树种米槠(Castanopsis carleisii)人工林为研究对象,采用短期氮添加与根袋法探讨氮和磷添加对不同菌根类型树种细根形态性状的影响。结果表明, 杉木细根的直径与组织密度表现出显著正的氮和磷可塑性响应,比根长和比表面积表现出负的氮和磷可塑性响应,而米槠细根的各形态性状均表现出与杉木相反的氮和磷可塑性响应方向;杉木细根形态性状的磷可塑性响应更强,米槠细根形态性状的氮和磷可塑性响应间无显著差异。细根同一形态性状对氮和磷添加的可塑性响应间的方向相同,且具有正相关关系;细根不同形态性状的养分塑性响应间存在着协同与权衡关系。因此,丛枝菌根树种杉木采取了延长细根寿命的资源保守型策略,而外生菌根树种米槠采取快速占有资源的资源获取型策略。此外,杉木和米槠细根对氮和磷添加可能均具有相同的觅食趋向,且杉木细根形态性状对磷添加更敏感。

    Abstract:

    Taking similar age arbuscular mycorrhiza (AM) species Cunninghamia lanceolata and ectotrophic mycorrhiza (EM) species Castanopsis carlesii in Sanming, Fujian Province as the research objects, the effects of nitrogen and phosphorus addition on morphological characteristics of fine roots of different mycorrhizal species were studied. The results showed that the diameter and root tissue density of fine roots of Cunninghamia lanceolata had significantly positive N and P plasticity response, and the specific root length and specific surface area had negative plasticity response, while the morphological traits of fine roots of Castanopsis carlesii showed opposite plasticity response. The P plasticity response of fine root morphological traits of Cunninghamia lanceolata was stronger than that of Castanopsis carlesii, but there was no significant difference between N and P plastic responses of fine root morphological traits of Castanopsis carlesii. The direction of plasticity response of the same morphological trait of fine root to N and P was the same, and there was a positive correlation. There was synergistic and tradeoff relationship between nutrient plasticity responses of different morphological characters in fine roots. Therefore, AM species Cunninghamia lanceolata adopted the resource conservation strategy to prolong the fine rootlife, while the EM species Castanopsis carlesii adopted the resource acquisition strategy to occupy resources quickly. In addition, the fine roots of AM species Cunninghamia lanceolata and the EM species Castanopsis carlesii might have the same foraging trend to N and P addition, and morphological traits of AM species Cunninghamia lanceolata fine roots were more sensitive to P addition than EM species Castanopsis carlesii.

    参考文献
    [1] WANG S G, HOU Y L. Research advance in nitrogen nutrient patch in soil [J]. Agric Res Arid Areas, 2003, 21(2): 45-49. [王曙光, 侯彦林. 土壤中氮营养斑研究进展[J]. 干旱地区农业研究, 2003, 21(2): 45- 49. doi: 10.3321/j.issn:1000-7601.2003.02.011.]
    [2] Robinson D, Hodge A, Fitter A. Constraints on the form and function of root systems [M]//KROON H, VISSER E J W. Root Ecology. Berlin: Springer, 2003: 1-31. doi: 10.1007/978-3-662-09784- 7_1.
    [3] MCCORMACK M L, DICKIE I A, EISSENSTAT D M, et al. Rede- fining fine roots improves understanding of below-ground contribu- tions to terrestrial biosphere processes [J]. New Phytol, 2015, 207(3): 505-518. doi: 10.1111/nph.13363.
    [4] LI Y, NIU S L, YU G R. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: A meta-analysis [J]. Glob Change Biol, 2016, 22(2): 934-943. doi: 10.1111/gcb.13125.
    [5] RAZAQ M, ZHANG P, SHEN H L, et al. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono [J]. PLoS One, 2017, 12(2): e0171321. doi: 10.1371/journal.pone.0171321.
    [6] WIJESINGHE D K, HUTCHINGS M J. The effects of spatial scale of environmental heterogeneity on the growth of a clonal plant: An experimental study with Glechoma hederacea [J]. J Ecol, 1997, 85(1): 17-28. doi: 10.2307/2960624.
    [7] WANG Y N, DU F, SUI Y Y, et al. Morphological responses of six successional plant species in old-fields of the Loess Plateau to the pattern and level of nitrogen application in a pot experiment [J]. Acta Ecol Sin, 2017, 37(9): 2913-2925. [王雁南, 杜峰, 隋媛媛, 等. 黄土丘陵区撂荒群落演替序列种根系对氮素施肥方式和水平的形态响应[J]. 生态学报, 2017, 37(9): 2913-2925. doi: 10.5846/stxb201601180124.]
    [8] ZOU X H. Study on adaptation mechanism of Chinese fir to hetero- geneous supply of phosphorus [D]. Fuzhou: Fujian Agriculture and Forestry University, 2012. [邹显花. 杉木对异质磷斑块胁迫适应机制的研究[D]. 福州: 福建农林大学, 2012.]
    [9] HODGE A. The plastic plant: Root responses to heterogeneous supplies of nutrients [J]. New Phytol, 2004, 162(1): 9-24. doi: 10.1111/j.1469- 8137.2004.01015.x.
    [10] ALLEN M F. The Ecology of Mycorrhizae [M]. New York: Cambridge University Press, 1991: 113-118.
    [11] WANG W N, WANG Y, HOCH G, et al. Linkage of root morphology to anatomy with increasing nitrogen availability in six temperate tree species [J]. Plant Soil, 2018, 425(1): 189-200. doi: 10.1007/s11104- 018-3563-3.
    [12] HAO Q W. Effects of exogenous nutrients addition on growth charac- teristics and stoichiometric characteristics of fine roots of Quercus acutissima and Liquidambar formosana [D]. Nanjing: Nanjing Forestry University, 2021. [郝倩葳. 外源养分添加对麻栎和枫香细根生长性状及化学计量特征的影响[D]. 南京: 南京林业大学, 2021. doi: 10. 27242/d.cnki.gnjlu.2021.000251.]
    [13] JIA L Q, CHEN G S, ZHANG L H, et al. Plastic responses of fine root morphology and architecture traits to nitrogen addition in ectomyco- rrhizal and arbuscular mycorrhizal tree species in an evergreen broad- leaved forest [J]. Chin J Appl Ecol, 2021, 32(2): 529-537. [贾林巧, 陈光水, 张礼宏, 等. 常绿阔叶林外生和丛枝菌根树种细根形态和构型性状对氮添加的可塑性响应[J]. 应用生态学报, 2021, 32(2): 529- 537. doi: 10.13287/j.1001-9332.202102.025.]
    [14] XU B, GAO Z, WANG J, et al. Morphological changes in roots of Bothriochloa ischaemum intercropped with Lespedeza davurica following phosphorus application and water stress [J]. Plant Biosyst, 2015, 149(2): 298-306. doi: 10.1080/11263504.2013.823132.
    [15] YANG Z Y, ZHOU B Z, GE X G, et al. Species-specific responses of root morphology of three co-existing tree species to nutrient patches reflect their root foraging strategies [J]. Front Plant Sci, 2021, 11: 618222. doi: 10.3389/fpls.2020.618222.
    [16] SMITHWICK E A H, EISSENSTAT D M, LOVETT G M, et al. Root stress and nitrogen deposition: Consequences and research priorities [J]. New Phytol, 2013, 197(3): 712-719. doi: 10.1111/nph.12081.
    [17] VAN DER HEIJDEN M G A, MARTIN F M, SELOSSE M A, et al. Mycorrhizal ecology and evolution: The past, the present, and the future [J]. New Phytol, 2015, 205(4): 1406-1423. doi: 10.1111/nph. 13288.
    [18] CHEEKE T E, PHILLIPS R P, BRZOSTEK E R, et al. Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function [J]. New Phytol, 2017, 214(1): 432-442. doi: 10.1111/nph.14343.
    [19] STEIDINGER B S, CROWTHER T W, LIANG J, et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses [J]. Nature, 2019, 569(7756): 404-408. doi: 10.1038/s41586-019-1128-0.
    [20] PHILLIPS R P, BRZOSTEK E, MIDGLEY M G. The mycorrhizal- associated nutrient economy: A new framework for predicting carbon- nutrient couplings in temperate forests [J]. New Phytol, 2013, 199(1): 41-51. doi: 10.1111/nph.12221.
    [21] LIU X J, ZHANG Y, HAN W X, et al. Enhanced nitrogen deposition over China [J]. Nature, 2013, 494(7438): 459-462. doi: 10.1038/nature11917.
    [22] YUAN Z Y, CHEN H Y H. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes [J]. Nat Climate Change, 2015, 5(5): 465-469. doi: 10.1038/nclimate2549.
    [23] PENG Y F, PENG Z P, ZENG X T, et al. Effects of nitrogen-phosphorus imbalance on plant biomass production: A global perspective [J]. Plant Soil, 2019, 436(1): 245-252. doi: 10.1007/s11104-018-03927-5.
    [24] ADAMS T S, MCCORMACK M L, EISSENSTAT D M. Foraging strategies in trees of different root morphology: The role of root life- span [J]. Tree Physiol, 2013, 33(9): 940-948. doi: 10.1093/treephys/tpt067.
    [25] CHENG L, CHEN W L, ADAMS T S, et al. Mycorrhizal fungi and roots are complementary in foraging within nutrient patches [J]. Ecology, 2016, 97(10): 2815-2823. doi: 10.1002/ecy.1514.
    [26] VALLADARES F, WRIGHT S J, LASSO E, et al. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest [J]. Ecology, 2000, 81(7): 1925-1936. doi: 10.1890/0012-9658(2000) 081[1925:PPRTLO]2.0.CO;2.
    [27] QU Q L, WANG G L, LIU G B, et al. Effect of N addition on root morphological characteristics and growth of Bothriochloa ischaemun [J]. Bull Soil Water Conserv, 2012, 32(2): 74-79. [曲秋玲, 王国梁, 刘国彬, 等. 施氮对白羊草细根形态和生长的影响[J]. 水土保持通报, 2012, 32(2): 74-79. doi: 10.13961/j.cnki.stbctb.2012.02.054.]
    [28] YAN X L, WANG C, MA X Q, et al. Root morphology and seedling growth of three tree species in southern China in response to homo- geneous and heterogeneous phosphorus supplies [J]. Trees, 2019, 33(5): 1283-1297. doi: 10.1007/s00468-019-01858-x.
    [29] FRESCHET G T, ROUMET C. Sampling roots to capture plant and soil functions [J]. Funct Ecol, 2017, 31(8): 1506-1518. doi: 10.1111/1365-2435.12883.
    [30] RAVEN J A, EDWARDS D. Roots: Evolutionary origins and biogeo- chemical significance [J]. J Exp Bot, 2001, 52(S1): 381-401. doi: 10. 1093/jexbot/52.suppl_1.381.
    [31] GUO W, GONG H, HAN S J, et al. Effects of nitrogen-water inter- action on fine root morphology and production in a mixed Pinus koraiensis forest in Changbai Mountains, northeastern China [J]. J Beijing For Univ, 2016, 38(4): 29-35. [郭伟, 宫浩, 韩士杰, 等. 氮、水交互对长白山阔叶红松林细根形态及生产量的影响[J]. 北京林业大学学报, 2016, 38(4): 29-35. doi: 10.13332/j.1000-1522.20150436.]
    [32] DING G Q. Impacts of two year’s fertilization on root morphological characters and nutrient contents of fine roots in Japanese larch (Larix kaempferi) plantation [D]. Harbin: Northeast Forestry University, 2009. [丁国泉. 连续两年施肥对日本落叶松细根形态和养分含量影响研究[D]. 哈尔滨: 东北林业大学, 2009.]
    [33] KUMAR P, HALLGREN S W, ENSTONE D E, et al. Root anatomy of Pinus taeda L.: Seasonal and environmental effects on development in seedlings [J]. Trees, 2007, 21(6): 693-706. doi: 10.1007/s00468-007- 0162-y.
    [34] FITTER A H. Magnolioid roots-hairs, architecture and mycorrhizal dependency [J]. New Phytol, 2004, 164(1): 15-16. doi: 10.1111/j.1469- 8137.2004.01193.x.
    [35] LIN G G, GUO D L, LI L, et al. Contrasting effects of ectomycorrhizal and arbuscular mycorrhizal tropical tree species on soil nitrogen cyc- ling: The potential mechanisms and corresponding adaptive strategies [J]. Oikos, 2018, 127(4): 518-530. doi: 10.1111/oik.04751.
    [36] JAKOBSEN I, ABBOTT L K, ROBSON A D. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L.: 1. Spread of hyphae and phosphorus inflow into roots [J]. New Phytol, 1992, 120(3): 371-380. doi: 10.1111/j.1469-8137.1992. tb01077.x.
    [37] SMITH S E, SMITH F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales [J]. Annu Rev Plant Biol, 2011, 62: 227-250. doi: 10.1146/annurev- arplant-042110-103846.
    [38] ZHANG L H. Plastic responses of fine root traits to N and P in ectomycorrhizal and arbuscular mycorrhizal tree species in an ever- green broadleaved forest [D]. Fuzhou: Fujian Normal University, 2019. [张礼宏. 常绿阔叶林外生菌根与内生菌根树种细根性状对N和P的可塑性响应[D]. 福州: 福建师范大学, 2019. doi: 10.27019/d.cnki. gfjsu.2019.000974.]
    [39] BERNTSON G M. Modelling root architecture: are there tradeoffs between efficiency and potential of resource acquisition? [J]. New Phytol, 1994, 127(3): 483-493. doi: 10.1111/j.1469-8137.1994.tb03966.x.
    [40] BAUHUS J, KHANNA P K, MENDEN N. Aboveground and below- ground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii [J]. Can J For Res, 2000, 30(12): 1886-1894. doi: 10. 1139/x00-141.
    [41] WAHL S, RYSER P. Root tissue structure is linked to ecological strategies of grasses [J]. New Phytol, 2000, 148(3): 459-471. doi: 10. 1046/j.1469-8137.2000.00775.x.
    [42] YU M, CAI J H, XUE L. Responses of fine root morphology of Cinnamomum camphora seedlings to nitrogen and phosphorus addi- tions and planting density [J]. Acta Ecol Sin, 2019, 39(20): 7641-7648. [余明, 蔡金桓, 薛立. 樟树(Cinnamomum camphora)幼苗细根形态对氮磷添加和幼苗密度的响应[J]. 生态学报, 2019, 39(20): 7641- 7648. doi: 10.5846/stxb201809041884.]
    [43] REED S C, TOWNSEND A R, CLEVELAND C C, et al. Microbial community shifts influence patterns in tropical forest nitrogen fixation [J]. Oecologia, 2010, 164(2): 521-531. doi: 10.1007/s00442-010-1649-6.
    [44] EISELE K A, SCHIMEL D S, KAPUSTKA L A, et al. Effects of available P and N:P ratios on non-symbiotic dinitrogen fixation in tallgrass prairie soils [J]. Oecologia, 1989, 79(4): 471-474. doi: 10. 1007/BF00378663.
    [45] SCHLEUSS P M, WIDDIG M, HEINTZ-BUSCHART A, et al. Interactions of nitrogen and phosphorus cycling promote P acquisition and explain synergistic plant-growth responses [J]. Ecology, 2020, 101(5): e03003. doi: 10.1002/ecy.3003.
    [46] SPOHN M. Element cycling as driven by stoichiometric homeostasis of soil microorganisms [J]. Basic Appl Ecol, 2016, 17(6): 471-478. doi: 10.1016/j.baae.2016.05.003.
    相似文献
    引证文献
引用本文

郑子艺,姜琦,贾林巧,陈光水.杉木和米槠人工林细根形态对短期氮和磷添加的可塑性响应[J].热带亚热带植物学报,2024,32(5):620~628

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-08
  • 最后修改日期:2023-09-18
  • 在线发布日期: 2024-09-29
文章二维码