植物硅转运蛋白研究进展
作者:
基金项目:

国家重点研发计划项目(2018YFD0600101);北京林业大学优秀研究生导师团队建设项目(YJSY-DSTD2022005)资助


Research Advances on Silicon Transporters in Plants
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [76]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    硅作为一种非金属元素,不仅在植物的生长发育过程中发挥重要的功能,同时在植物抵御生物和非生物胁迫中也发挥着重要的作用。研究表明硅的吸收与转运由硅转运蛋白参与完成,根据对硅酸的转运特性主要分为硅内流转运蛋白和硅外流转运蛋白。该文对已鉴定出的硅转运蛋白的结构特点、功能、调控方式进行了总结,对植物吸收与转运硅的过程进行了系统性解析,提出了存在的问题,并对未来的研究方向进行了展望。

    Abstract:

    Silicon, as a non-metallic element, not only plays an important role in plant growth and development, but also involves in biotic and abiotic resistance. Silicon transporters are directly responsible for the absorption and transportation of silicon, which could be mainly classified into silicon influx transporters and silicon efflux transporters according to their transport properties. In this review, the structural characteristics, functions, and regulatory modes of the reported silicon transporters are summarized, the process of silicon uptake and transport in plants are described, the existing problems are put forward, and the future research directions is also prospected.

    参考文献
    [1] TAYADE R, GHIMIRE A, KHAN W, et al. Silicon as a smart fertilizer for sustainability and crop improvement [J]. Biomolecules, 2022, 12(8): 1027. doi: 10.3390/biom12081027.
    [2] EPSTEIN E. The anomaly of silicon in plant biology [J]. Proc Natl Acad Sci USA, 1994, 91(1): 11-17. doi: 10.1073/pnas.91.1.11.
    [3] XU C X, LIU Z P, LIU Y L. The physiological function of silicon in plants [J]. Plant Physiol Commun, 2004, 40(6): 753-757. [徐呈祥, 刘兆普, 刘友良. 硅在植物中的生理功能[J]. 植物生理学通讯, 2004, 40(6): 753-757. doi: 10.13592/j.cnki.ppj.2004.06.036.]
    [4] GAO D, CAI K Z, CHEN J N, et al. Silicon enhances photochemical efficiency and adjusts mineral nutrient absorption in Magnaporthe oryzae infected rice plants [J]. Acta Physiol Plant, 2011, 33(3): 675-682. doi: 10.1007/s11738-010-0588-5.
    [5] CAI K Z, GAO D, CHEN J N, et al. Probing the mechanisms of silicon-mediated pathogen resistance [J]. Plant Signal Behav, 2009, 4(1): 1-3. doi: 10.4161/psb.4.1.7280.
    [6] SHI Y, ZHANG Y, YAO H J, et al. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress [J]. Plant Physiol Biochem, 2014, 78: 27-36. doi: 10. 1016/j.plaphy.2014.02.009.
    [7] ZHU Y X, XU X B, HU Y H, et al. Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L. [J]. Plant Cell Rep, 2015, 34(9): 1629-1646. doi: 10.1007/s00299-015-1814-9.
    [8] AZEEM S, LI Z, ZHENG H P, et al. Quantitative proteomics study on Lsi1 in regulation of rice (Oryza sativa L.) cold resistance [J]. Plant Growth Regul, 2016, 78(3): 307-323. doi: 10.1007/s10725-015-0094-2.
    [9] SOUNDARARAJAN P, SIVANESAN I, JANA S, et al. Influence of silicon supplementation on the growth and tolerance to high temperature in Salvia splendens [J]. Hort Environ Biotechnol, 2014, 55(4): 271-279.
    [10] KIM Y H, KHAN A L, KIM D H, et al. Silicon mitigates heavy metal stress by regulating p-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones [J]. BMC Plant Biol, 2014, 14(1): 13. doi: 10.1186/1471-2229-14-13.
    [11] MA J F, TAKAHASHI E. Soil, Fertilizer and Plant Silicon Research in Japan [M]. Amsterdam: Elsevier Science, 2002, 12: 257-274.
    [12] TAKAHASHI E, MA J F, MIYAKE Y. The possibility of silicon as an essential element for higher plants [J]. Comments Agric Food Chem, 1990, 2(2): 99-122.
    [13] MA J F, TAMAI K, YAMAJI N, et al. A silicon transporter in rice [J]. Nature, 2006, 440(7084): 688-691. doi: 10.1038/nature04590.
    [14] MA J F, YAMAJI N, MITANI N, et al. An efflux transporter of silicon in rice [J]. Nature, 2007, 448(7150): 209-212. doi: 10.1038/nature05964.
    [15] MA J F, YAMAJI N. Silicon uptake and accumulation in higher plants [J]. Trends Plant Sci, 2006, 11(8): 392-397. doi: 10.1016/j.tplants.2006. 06.007.
    [16] LUYCKX M, HAUSMAN J F, LUTTS S, et al. Silicon and plants: Current knowledge and technological perspectives [J]. Front Plant Sci, 2017, 8: 411. doi: 10.3389/fpls.2017.00411.
    [17] MUKARRAM M, PETRIK P, MUSHTAQ Z, et al. Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signaling molecules [J]. Environ Pollut, 2022, 310: 119855. doi: 10.1016/j.envpol.2022.119855.
    [18] COSKUN D, DESHMUKH R, SONAH H, et al. The controversies of silicon’s role in plant biology [J]. New Phytol, 2019, 221(1): 67-85. doi: 10.1111/nph.15343.
    [19] AHIRE M L, MUNDADA P S, NIKAM T D, et al. Multifaceted roles of silicon in mitigating environmental stresses in plants [J]. Plant Physiol Biochem, 2021, 169: 291-310. doi: 10.1016/j.plaphy.2021.11. 010.
    [20] DEBONA D, RODRIGUES F A, DATNOFF L E. Silicon’s role in abiotic and biotic plant stresses [J]. Annu Rev Phytopathol, 2017, 55(1): 85-107. doi: 10.1146/annurev-phyto-080516-035312.
    [21] SHANMUGAIAH V, GAUBA A, HARI S K, et al. Effect of silicon micronutrient on plant’s cellular signaling cascades in stimulating plant growth by mitigating the environmental stressors [J]. Plant Growth Regul, 2023, 100(2): 391-408. doi: 10.1007/s10725-023-00982-6.
    [22] KHAN I, AWAN S A, RIZWAN M, et al. Silicon: An essential element for plant nutrition and phytohormones signaling mechanism under stressful conditions [J]. Plant Growth Regul, 2023, 100(2): 301-319. doi: 10.1007/s10725-022-00872-3.
    [23] SIDDIQUI M H, MUKHERJEE S, AL-MUNQEDHI B M A, et al. Salicylic acid and silicon impart resilience to lanthanum toxicity in Brassica juncea L. seedlings [J]. Plant Growth Regul, 2023, 100(2): 453-466. doi: 10.1007/s10725-021-00787-5.
    [24] GONG H J, CHEN K M, WANG S M, et al. Advances in silicon nutrition of plants [J]. Acta Bot Boreali-Occid Sin, 2004, 24(12): 2385-2392. [宫海军, 陈坤明, 王锁民, 等. 植物硅营养的研究进展[J]. 西北植物学报, 2004, 24(12): 2385-2392. doi: 10.3321/j.issn:1000-4025.2004.12.034.]
    [25] MA J F, YAMAJI N. A cooperative system of silicon transport in plants [J]. Trends Plant Sci, 2015, 20(7): 435-442. doi: 10.1016/j.tplants. 2015.04.007.
    [26] HILDEBRAND M, VOLCANI B E, GASSMANN W, et al. A gene family of silicon transporters [J]. Nature, 1997, 385(6618): 688-689. doi: 10.1038/385688b0.
    [27] MARRON A O, ALSTON M J, HEAVENS D, et al. A family of diatom-like silicon transporters in the siliceous loricate choanoflagellates [J]. Proc R Soc B Biol Sci, 2013, 280(1756): 20122543. doi: 10.1098/ rspb.2012.2543.
    [28] POMMERRENIG B, DIEHN T A, BIENERT G P. Metalloido-porins: Essentiality of nodulin 26-like intrinsic proteins in metalloid transport [J]. Plant Sci, 2015, 238: 212-227. doi: 10.1016/j.plantsci.2015.06.002.
    [29] YAMAJI N, MITATNI N, MA J F. A transporter regulating silicon distribution in rice shoots [J]. Plant Cell, 2008, 20(5): 1381-1389. doi: 10.1105/tpc.108.059311.
    [30] CHIBA Y, MITANI N, YAMAJI N, et al. HvLsi1 is a silicon influx transporter in barley [J]. Plant J, 2009, 57(5): 810-818. doi: 10.1111/j. 1365-313X.2008.03728.x.
    [31] YAMAJI N, CHIBA Y, MITANI-UENO N, et al. Functional characterrization of a silicon transporter gene implicated in silicon distribution in barley [J]. Plant Physiol, 2012, 160(3): 1491-1497. doi: 10.1104/pp. 112.204578.
    [32] MITANI N, YAMAJI N, MA J F. Identification of maize silicon influx transporters [J]. Plant Cell Physiol, 2009, 50(1): 5-12. doi: 10.1093/ pcp/pcn110.
    [33] MONTPETIT J, VIVANCOS J, MITANI-UENO N, et al. Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene [J]. Plant Mol Biol, 2012, 79(1/2): 35-46. doi: 10.1007/s11103-012-9892-3.
    [34] PONTIGO S, LARAMA G, PARRA-ALMUNA L, et al. Physiological and molecular insights involved in silicon uptake and transport in ryegrass [J]. Plant Physiol Biochem, 2021, 163: 308-316. doi: 10.1016/ j.plaphy.2021.04.013.
    [35] MA H, WANG K, WU M D, et al. ORF cloning and bioinformatics analysis of silicon transporter PhLsi1 in Phyllostachys edulis [J]. J Hebei Norm Univ (Nat Sci), 2015, 39(4): 345-351. [马欢, 王凯, 吴妙丹, 等. 毛竹硅转运基因PhLsi1的ORF克隆及生物信息学分析[J]. 河北师范大学学报(自然科学版), 2015, 39(4): 345-351. doi: 10. 13763/j.cnki.jhebnu.nse.2015.04.012.]
    [36] GENG X, GE B H, LIU Y J, et al. Genome-wide identification and functional analysis of silicon transporter family genes in moso bamboo (Phyllostachys edulis) [J]. Int J Biol Macromol, 2022, 223: 1705-1719. doi: 10.1016/j.ijbiomac.2022.10.099.
    [37] MITANI N, YAMAJI N, AGO Y, et al. Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation [J]. Plant J, 2011, 66(2): 231-240. doi: 10.1111/j.1365-313X.2011.04483.x.
    [38] SUN H, GUO J, DUAN Y K, et al. Isolation and functional characterization of CsLsi1, a silicon transporter gene in Cucumis sativus [J]. Physiol Plant, 2017, 159(2): 201-214. doi: 10.1111/ppl.12515.
    [39] SUN H, DUAN Y K, MITANI-UENO N, et al. Tomato roots have a functional silicon influx transporter but not a functional silicon efflux transporter [J]. Plant Cell Environ, 2020, 43(3): 732-744. doi: 10.1111/ pce.13679.
    [40] COSKUN D, DESHMUKH R, SONAH H, et al. Si permeability of a deficient Lsi1 aquaporin in tobacco can be enhanced through a conserved residue substitution [J]. Plant Direct, 2019, 3(8): e00163. doi: 10.1002/pld3.163.
    [41] LIU H L, YANG L L, XIN M M. Cloning and bioinformatic analysis of MdLsi1 gene in apple (Malus domestica Borkh.) [J]. N Hort, 2019(9): 27-33. [刘海莉, 杨蕾蕾, 辛苗苗, 等. 苹果MdLsi1基因的克隆及生物信息学分析[J]. 北方园艺, 2019(9): 27-33. doi: 10.11937/bfyy. 20183232.]
    [42] VULAVALA V K R, ELBAUM R, YERMIYAHU U, et al. Silicon fertilization of potato: Expression of putative transporters and tuber skin quality [J]. Planta, 2016, 243(1): 217-229. doi: 10.1007/s00425-015-2401-6.
    [43] OUELLETTE S, GOYETTE M H, LABBÉ C, et al. Silicon transporters and effects of silicon amendments in strawberry under high tunnel and field conditions [J]. Front Plant Sci, 2017, 8: 949. doi: 10. 3389/fpls.2017.00949.
    [44] DESHMUKH R K, VIVANCOS J, GUÉRIN V, et al. Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice [J]. Plant Mol Biol, 2013, 83(4/5): 303-315. doi: 10.1007/s11103-013-0087-3.
    [45] NORONHA H, SILVA A, MITANI-UENO N, et al. The grapevine NIP2;1 aquaporin is a silicon channel [J]. J Exp Bot, 2020, 71(21): 6789-6798. doi: 10.1093/jxb/eraa294.
    [46] CEN G L, SUN T T, CHEN Y L, et al. Characterization of silicon transporter gene family in Saccharum and functional analysis of the ShLsi6 gene in biotic stress [J]. Gene, 2022, 822: 146331. doi: 10.1016/ j.gene.2022.146331.
    [47] MUNDADA P S, AHIRE M L, UMDALE S D, et al. Characterization of influx and efflux silicon transporters and understanding their role in the osmotic stress tolerance in finger millet [Eleusine coracana (L.) Gaertn.] [J]. Plant Physiol Biochem, 2021, 162: 677-689. doi: 10.1016/j.plaphy.2021.03.033.
    [48] YAMAJI N, MA J F. Metalloid transporters and their regulation in plants [J]. Plant Physiol, 2021, 187(4): 1929-1939. doi: 10.1093/plph ys/kiab326.
    [49] SAITOH Y, MITANI-UENO N, SAITO K, et al. Structural basis for high selectivity of a rice silicon channel Lsi1[J]. Nat Commun, 2021, 12(1): 6236. doi: 10.1038/s41467-021-26535-x.
    [50] VAN DEN BERG B, PEDEBOS C, BOLLA J R, et al. Structural basis for silicic acid uptake by higher plants [J]. J Mol Biol, 2021, 433(21): 167226. doi: 10.1016/j.jmb.2021.167226.
    [51] GRÉGOIRE C, RÉMUS-BOREL W, VIVANCOS J, et al. Discovery of a multigene family of aquaporin silicon transporters in the primitive plant Equisetum arvense [J]. Plant J, 2012, 72(2): 320-330. doi: 10. 1111/j.1365-313X.2012.05082.x.
    [52] YAMAJI N, SAKURAI G, MITANI-UENO N, et al. Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice [J]. Proc Natl Acad Sci USA, 2015, 112(36): 11401-11406. doi: 10.1073/pnas.1508987112.
    [53] HUANG S, YAMAJI N, SAKURAI G, et al. A pericycle-localized silicon transporter for efficient xylem loading in rice [J]. New Phytol, 2022, 234(1): 197-208. doi: 10.1111/nph.17959.
    [54] MITANI N, CHIBA Y, YAMAJI N, et al. Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice [J]. Plant Cell, 2009, 21(7): 2133-2142. doi: 10.1105/tpc.109.067884.
    [55] MITANI-UENO N, YAMAJI N, MA J F. Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake [J]. Plant Signal Behav, 2011, 6(7): 991-994. doi: 10.4161/psb.6.7.15462.
    [56] SUN H, DUAN Y K, QI X C, et al. Isolation and functional characterization of CsLsi2, a cucumber silicon efflux transporter gene [J]. Ann Bot, 2018, 122(4): 641-648. doi: 10.1093/aob/mcy103.
    [57] VIVANCOS J, DESHMUKH R, GRÉGOIRE C, et al. Identification and characterization of silicon efflux transporters in horsetail (Equisetum arvense) [J]. J Plant Physiol, 2016, 200: 82-89. doi: 10.1016/j. jplph.2016.06.011.
    [58] COSKUN D, DESHMUKH R, SHIVARAJ S M, et al. Lsi2: A black box in plant silicon transport [J]. Plant Soil, 2021, 466(1/2): 1-20. doi: 10.1007/s11104-021-05061-1.
    [59] YAMAJI N, MA J F. Spatial distribution and temporal variation of the rice silicon transporter Lsi1[J]. Plant Physiol, 2007, 143(3): 1306-1313. doi: 10.1104/pp.106.093005.
    [60] YAMAJI N, MA J F. Further characterization of a rice silicon efflux transporter, Lsi2[J]. Soil Sci Plant Nutr, 2011, 57(2): 259-264. doi: 10. 1080/00380768.2011.565480.
    [61] MITANI N, YAMAJI N, MA J F. Characterization of substrate specificity of a rice silicon transporter, Lsi1[J]. Pflugers Arch Europ J Phsiol, 2008, 456(4): 679-686. doi: 10.1007/s00424-007-0408-y.
    [62] WANG H S, YU C, FAN P P, et al. Identification of two cucumber putative silicon transporter genes in Cucumis sativus [J]. J Plant Growth Regul, 2015, 34(2): 332-338. doi: 10.1007/s00344-014-9466-5.
    [63] MITANI-UENO N, YAMAJI N, MA J F. High silicon accumulation in the shoot is required for down-regulating the expression of Si transporter genes in rice [J]. Plant Cell Physiol, 2016, 57(12): 2510-2518. doi: 10. 1093/pcp/pcw163.
    [64] LI Z, KHAN M U, YAN X, et al. Deciphering the molecular mechanisms of chilling tolerance in Lsi1-overexpressing rice [J]. Int J Mol Sci, 2022, 23(9): 4667. doi: 10.3390/ijms23094667.
    [65] MA J F, YAMAJI N, MITANI N, et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain [J]. Proc Natl Acad Sci USA, 2008, 105(29): 9931-9935. doi: 10.1073/pnas.0802361105.
    [66] WANG F Z, CHEN M X, YU L J, et al. OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice [J]. Front Plant Sci, 2017, 8: 1868. doi: 10.3389/fpls.2017. 01868.
    [67] KAUR H, GREGER M. A review on Si uptake and transport system [J]. Plants (Basel), 2019, 8(4): 81. doi: 10.3390/plants8040081.
    [68] MANDLIK R, THAKRAL V, RATURI G, et al. Significance of silicon uptake, transport, and deposition in plants [J]. J Exp Bot, 2020, 71(21): 6703-6718. doi: 10.1093/jxb/eraa301.
    [69] GAUR S, KUMAR J, KUMAR D, et al. Fascinating impact of silicon and silicon transporters in plants: A review [J]. Ecotoxicol Environ Saf, 2020, 202: 110885. doi: 10.1016/j.ecoenv.2020.110885.
    [70] MITANI-UENO N, MA J F. Linking transport system of silicon with its accumulation in different plant species [J]. Soil Sci Plant Nutr, 2021, 67(1): 10-17. doi: 10.1080/00380768.2020.1845972.
    [71] WANG Z G, ZHANG B L, CHEN Z W, et al. Three OsMYB36 members redundantly regulate Casparian strip formation at the root endodermis [J]. Plant Cell, 2022, 34(8): 2948-2968. doi: 10.1093/ plcell/koac140.
    [72] FRY S C, NESSELRODE B H W A, MILLER J G, et al. Mixedlinkage (1→3, 1→4)-β-d-glucan is a major hemicellulose of Equisetum (horsetail) cell walls [J]. New Phytol, 2008, 179(1): 104-115. doi: 10. 1111/j.1469-8137.2008.02435.x.
    [73] ELBAUM R, MELAMED-BESSUDO C, TUROSS N, et al. New methods to isolate organic materials from silicified phytoliths reveal fragmented glycoproteins but no DNA [J]. Quat Int, 2009, 193(1/2): 11-19. doi: 10.1016/j.quaint.2007.07.006.
    [74] HARRISON C C. Evidence for intramineral macromolecules containing protein from plant silicas [J]. Phytochemistry, 1996, 41(1): 3742. doi: 10.1016/0031-9422(95)00576-5.
    [75] GŁAZOWSKA S, BALDWIN L, MRAVEC J, et al. The impact of silicon on cell wall composition and enzymatic saccharification of Brachypodium distachyon [J]. Biotechnol Biofuels, 2018, 11(1): 171. doi: 10.1186/s13068-018-1166-0.
    [76] PU J B, WANG L J, ZHANG W J, et al. Organically-bound silicon enhances resistance to enzymatic degradation and nanomechanical properties of rice plant cell walls [J]. Carbohydr Polym, 2021, 266: 118057. doi: 10.1016/j.carbpol.2021.118057.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

葛博浩,耿新,刘艳晶,刘倩茹,卢存福.植物硅转运蛋白研究进展[J].热带亚热带植物学报,2024,32(4):562~570

复制
分享
文章指标
  • 点击次数:132
  • 下载次数: 4510
  • HTML阅读次数: 3904
  • 引用次数: 0
历史
  • 收稿日期:2023-04-21
  • 最后修改日期:2023-06-15
  • 在线发布日期: 2024-08-21
文章二维码