离子型稀土矿废弃地剑豆耐性种质筛选
作者:
基金项目:

国家自然科学基金项目(31901226)资助


Screening of Tolerance Germplasm for Canavalia ensiformis in the Abandoned Area of Ionic Rare Earth Mine
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为筛选离子型稀土矿废弃地耐性强的剑豆种质材料,20个剑豆(Canavalia ensiformis)种质资源进行盆栽试验,并观测生长性状指标,采用方差分析、隶属函数分析和聚类分析等方法对剑豆种质的生长性状进行综合评价。结果表明,在苗期和始花期,不同剑豆种质的株高、地径、主茎粗、主茎节数和地上生物量均存在显著差异(P<0.05)。20个种质隶属函数综合评价值为:PI 279593>PI 362193>NT 576>BN-13474-63>PI 470242>PI 358592>B2>PI 181048>PI 364355>CHN3>PI 470931>PI 337078>CHN4>PI 164695>PI 276655>CPI 50103>B1>PI 338584>PI 404610>PI 308540。聚类分析结果表明,20个种质可分为5大类,其中第IV类的生长性状最好,第V类次之,这与隶属函数结果一致。经复筛,在离子型稀土采矿土壤上生长性状好的前5个种质的综合评价值为:PI 362193>NT 576>PI 279593>BN-13474-63>PI 470242。PI 362193是耐性最强的种质,可作为离子型稀土采矿迹地生态修复最优选的剑豆种质,NT 576、PI 27959可作为备选种质。

    Abstract:

    In order to select the gerplasm resources with strong tolerance in the abandoned land of ionic rare earth mine, twenty Canavalia ensiformis germplasms derived from more than 10 countries or regions were potted, the growth traits were observed and evaluated by variance analysis, membership function analysis and cluster analysis, variance analysis, membership function analysis and cluster analysis. The results showed that there were significant differences in plant height, ground diameter, stem thick, main stalk pitch number and aboveground biomass among different germplasms at seedling stage and initial flowering stage (P<0.05). The membership function analysis showed that comprehensive evaluation value of 20 germplasms were in the order of PI 279593>PI 362193>NT 576>BN-13474-63>PI 470242>PI 358592>B2>PI 181048>PI 364355>CHN3>PI 470931> PI 337078>CHN4>PI 164695>PI 276655>CPI 50103>B1>PI 338584>PI 404610>PI 308540. The cluster analysis showed that 20 germplasms could be divided into 5 categories, among which the fourth category had the best growth characteristics, followed by the fifth category, which was consistent with the result of membership function. The secondary screening experiment showed that the comprehensive evaluation value of the top five germplasms with good growth characteristics on ionic rare earth mine soil were in the order of PI 362193>NT 576>PI 279593>BN-13474-63>PI 470242. Therefore, PI 362193 had the strongest tolerance, which could be used as the best choice for ecological restoration of ionic rare earth mine, while NT 576 and PI 27959 can be used as candidate germplasms.

    参考文献
    [1] CHEN M, ZHANG D C, ZHU Q J, et al. Ionic rare earth mine of abandoned land of ecological restoration of research progress [J]. J Chin Soc Rare Earths, 2017, 35(4): 461-468. [陈敏, 张大超, 朱清江, 等. 离子型稀土矿山废弃地生态修复研究进展[J]. 中国稀土学报, 2017, 35(4): 461-468. doi: 10.11785/S1000-4343.20170404.]
    [2] ZHOU L Y, LI Z L, LIU W, et al. Restoration of rare earth mine areas: Organic amendments and phytoremediation [J]. Environ Sci Pollut Res, 2015, 22(21): 17151-17160. doi: 10.1007/s11356-015-4875-y.
    [3] ZHENG X K, FENG X J, CHEN Z, et al. Research progress on environmental problems of ionic rare earth mining and restoration of abandoned land [J]. Appl Chem Ind, 2019, 48(3): 681-684. [郑先坤, 冯秀娟, 陈哲, 等. 离子型稀土矿开采环境问题及废弃地修复治理研究进展[J]. 应用化工, 2019, 48(3): 681-684. doi: 10.16581/j.cnki. issn1671-3206.2019.03.015.]
    [4] CHAO Y Q, LIU W S, CHEN Y M, et al. Structure, variation, and co-occurrence of soil microbial communities in abandoned sites of a rare earth elements mine [J]. Environ Sci Technol, 2016, 50(21): 11481-11490. doi: 10.1021/acs.est.6b02284.
    [5] ALSABBAGH A H, ABUQUDAIRA T M. Phytoremediation of Jordanian uranium-rich soil using sunflower [J]. Water Air Soil Pollut, 2017, 228(6): 219. doi: 10.1007/s11270-017-3396-3.
    [6] CHEEKE T E, PHILLIPS R P, BRZOSTEK E R, et al. Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function [J]. New Phytol, 2017, 214(1): 432-442. doi: 10.1111/nph.14343.
    [7] CHAPON A, GUILLERM A Y, DELALANDE L, et al. Dominant colonisation of wheat roots by Pseudomonas fluorescens Pf29A and selection of the indigenous microflora in the presence of the take-all fungus [J]. Eur J Plant Pathol, 2002, 108(5): 449-459. doi: 10.1023/A: 1016099707119.
    [8] LIU W S, LIU C, WANG Z W, et al. Limiting factors for restoration of dumping sites of ionic rare earth mine tailings [J]. Acta Pedol Sin, 2015, 52(4): 879-887. [刘文深, 刘畅, 王志威, 等. 离子型稀土矿尾砂地植被恢复障碍因子研究[J]. 土壤学报, 2015, 52(4): 879-887. doi: 10.11766/trxb201407310385.]
    [9] LIU L T, WANG X D, WEN Q, et al. Interspecific associations of plant populations in rare earth mining wasteland in southern China [J]. Int Biodet Biodegrad, 2017, 118: 82-88. doi: 10.1016/j.ibiod.2017.01.011.
    [10] WANG S L, ZHENG J G. Cd-accumulation characteristics of Brassica cultivars and their potential for phytoremediating Cd-contaminated soils [J]. J Fujian Agric For Univ (Nat Sci), 2004, 33(1): 94-99. [王松良, 郑金贵. 芸苔属蔬菜的Cd富集特性及其修复土壤Cd污染的潜力[J]. 福建农林大学学报(自然科学版), 2004, 33(1): 94-99. doi: 10. 3969/j.issn.1671-5470.2004.01.023.]
    [11] ZHANG Z G, YAO D X, ZHENG Y H, et al. The phytoremediation potential of six Compositae plants to soil pollution of heavy metal in coal mine collapse and reclaimed area [J]. J China Coal Soc, 2010, 35(10): 1742-1747. [张治国, 姚多喜, 郑永红, 等. 煤矿塌陷复垦区6种菊科植物土壤重金属污染修复潜力研究[J]. 煤炭学报, 2010, 35(10): 1742-1747. doi: 10.13225/j.cnki.jccs.2010.10.032.]
    [12] BAI D Z, JI Z H, YANG Y X, et al. Study on three compounds cropping models on restoration of degradation red soil quality [J]. J Soil Water Conserv, 2005, 19(1): 160-163. [拜得珍, 纪中华, 杨艳鲜, 等. 3种复合种植模式对退化红壤质量恢复的初探[J]. 水土保持学报, 2005, 19(1): 160-163. doi: 10.3321/j.issn:1009-2242.2005.01.040.]
    [13] HEI Z W, XIANG H M, ZHANG J E, et al. Advances in legumes-based remediation of heavy metals contaminated soil [J]. Ecol Sci, 2019, 38(3): 218-224. [黑泽文, 向慧敏, 章家恩, 等. 豆科植物修复土壤重金属污染研究进展[J]. 生态科学, 2019, 38(3): 218-224. doi: 10.14108/j.cnki.1008-8873.2019.03.027.]
    [14] HUANG X R, ZHANG C W, ZHANG X X. The role of rhizobium in remediation of contaminated soils [J]. Soil Fert Sci China, 2016(5): 5-10. [黄兴如, 张彩文, 张晓霞. 根瘤菌在污染土壤修复中的地位和作用[J]. 中国土壤与肥料, 2016(5): 5-10. doi: 10.11838/sfsc. 20160502.]
    [15] SMARTT J. Evolution of grain legumes. II. Old and new world pulses of lesser economic importance [J]. Exp Agric, 1985, 21(1): 1-18. doi: 10.1017/S0014479700012205.
    [16] SASIPRIYA G, SIDDHURAJU P. Evaluation of growth performance, serum biochemistry and haematological parameters on broiler birds fed with raw and processed samples of Entada scandens, Canavalia gladiata and Canavalia ensiformis seed meal as an alternative protein source [J]. Trop Anim Health Prod, 2013, 45(3): 811-820. doi: 10. 1007/s11250-012-0293-z.
    [17] LIU M Q, CHEN L J, ZHOU W, et al. Study and comprehensive evaluation on the diversity of agronomic characters of Canavalia ensiformis [J]. Chin J Trop Crops, 2021, 42(2): 349-355. [刘明骞, 陈丽君, 周玮, 等. 剑豆主要农艺性状多样性研究与综合评价[J]. 热带作物学报, 2021, 42(2): 349-355. doi: 10.3969/j.issn.1000-2561. 2021.02.008.]
    [18] NISHIZAWA K, ARII Y. Structural transitions of sword bean canavalin in response to different salt concentrations [J]. Heliyon, 2019, 5(12): e03037. doi: 10.1016/j.heliyon.2019.e03037.
    [19] NISHIZAWA K, ARII Y. Reversible changes of canavalin solubility controlled by divalent cation concentration in crude sword bean extract [J]. Biosci Biotechnol Biochem, 2016, 80(12): 2459-2466. doi: 10. 1080/09168451.2016.1224642.
    [20] CARLO-ACOSTA S I. Promoting the use of tropical legumes as cover crops in Puerto Rico [D]. Puerto Rico: University of Puerto Rico, 2009.
    [21] FEIDAS H, KOUAM M K, KANTZOURA V, et al. Global geographic distribution of Trichinella species and genotypes [J]. Infect Genet Evol, 2014, 26: 255-266. doi: 10.1016/j.meegid.2014.06.009.
    [22] MA L, RAO X Q, LU P, et al. Acid-tolerant plant species screened for rehabilitating acid mine drainage sites [J]. J Soils Sediments, 2015, 15(5): 1104-1112. doi: 10.1007/s11368-015-1128-0.
    [23] LIU M Q, DING M M, CHEN L J, et al. Genetic diversity and relationships among Canavalia ensiformis (L.) DC. Accessions as revealed by sequence-related amplified polymorphism markers [J]. Biochem Syst Ecol, 2014, 57: 242-249. doi: 10.1016/j.bse.2014.08.005.
    [24] ORIOLA K O, HUSSEIN J B, OKE M O, et al. Description and evaluation of physical and moisture‐dependent thermal properties of jack bean seeds (Canavalia ensiformis) [J]. J Food Process Preserv, 2021, 45(2): e15166. doi: 10.1111/JFPP.15166.
    [25] SARIJAN, ADRIANUS, EKOWATI N Y, et al. Phytotoxity test of probiotic bacteria in jack bean seed (Canavalia ensiformis L.) through seed viability test [J]. J Phys Conf Ser, 2021, 1899: 012018. doi: 10. 1088/1742-6596/1899/1/012018.
    [26] MAHARDHIKA B P, RIDLA M, MUTIA R, et al. The evaluation of protease enzyme effectivenes in broiler chicken diet containing jack bean seed (Canavalia ensiformis) with different protein level toward internal organ size [J]. IOP Conf Ser: Earth Environ Sci, 2021, 883(1): 012012. doi: 10.1088/1755-1315/883/1/012012.
    [27] FONSECA V J A, BRAGA A L, DE ALMEIDA R S, et al. Lectins ConA and ConM extracted from Canavalia ensiformis (L.) DC and Canavalia rosea (Sw.) DC inhibit planktonic Candida albicans and Candida tropicalis [J]. Arch Microbiol, 2022, 204(6): 346. doi: 10. 1007/S00203-022-02959-X.
    [28] SANTOS V F, ARAÚJO A C J, FREITAS P R, et al. Enhanced antibacterial activity of the gentamicin against multidrug-resistant strains when complexed with Canavalia ensiformis lectin [J]. Microb Pathog, 2021, 152: 104639. doi: 10.1016/J.MICPATH.2020.104639.
    [29] SANTANA N A, RABUSCKE C M, SOARES V B, et al. Vermicompost dose and mycorrhization determine the efficiency of copper phytoremediation by Canavalia ensiformis [J]. Environ Sci Pollut Res, 2018, 25(13): 12663-12677. doi: 10.1007/s11356-018-1533-1.
    [30] NAM I H, ROH S B, PARK M J, et al. Immobilization of heavy metal contaminated mine wastes using Canavalia ensiformis extract [J]. CATENA, 2016, 136: 53-58. doi: 10.1016/j.catena.2015.07.019.
    [31] LIU M Q, CHEN X Y, CHEN L J, et al. Growth rhythm and main agronomic characters’ genetic variation of 12 provenances of Canavalia ensiformis from Australia [J]. Guangdong Agric Sci, 2013, 40(23): 16- 20. [刘明骞, 陈晓阳, 陈丽君, 等. 澳大利亚12个剑豆种源生长节律及主要农艺性状的遗传变异分析[J]. 广东农业科学, 2013, 40(23): 16-20. doi: 10.3969/j.issn.1004-874X.2013.23.005.]
    [32] YE H Y, LIU C L, HE C M, et al. Growth characteristics of Astragalus sinicus L. varieties [J]. Fujian J Agric Sci, 2022, 37(2): 258-266. [叶红云, 刘彩玲, 何春梅, 等. 20个紫云英品种不同生育期的生长性状分析与评价[J]. 福建农业学报, 2022, 37(2): 258-266. doi: 10.19303/j.issn.1008-0384.2022.002.016.]
    [33] PENG W X, YANG Y T, FENG J Y, et al. Improvement of sewage sludge and enhanced measure on soil of rare earth mine wasteland [J]. J S China Agric Univ, 2020, 41(5): 65-72. [彭维新, 杨源通, 冯嘉仪, 等. 污泥及强化措施对稀土矿区废弃地土壤的改良[J]. 华南农业大学学报, 2020, 41(5): 65-72. doi: 10.7671/j.issn.1001-411X.202001007.]
    [34] XIE F, GUO D L, GE Y, et al. Evaluation and screening of flax germplasm for drought tolerance in the entire growth period [J]. J Xinjiang Univ (Nat Sci), 2023, 40(4): 467-475. [谢芳, 郭栋良, 葛优, 等. 亚麻全生育期耐旱性评价及耐旱种质筛选[J]. 新疆大学学报(自然科学版), 2023, 40(4): 467-475. doi: 10.13568/j.cnki.651094.651316. 2022.09.07.0001.]
    [35] HE H P, NAN L L, MA B, et al. Screening and evaluation of seedling stage cold tolerance in different sainfoin varieties [J]. Chin J Grassl, 2023, 45(5): 41-49. [何海鹏, 南丽丽, 马彪, 等. 红豆草种质苗期耐寒性筛选及评价[J]. 中国草地学报, 2023, 45(5): 41-49. doi: 10. 16742/j.zgcdxb.20220213.]
    [36] HAN D, SHI X L, DING S L, et al. Evaluation of salt tolerance in 60 soybean germplasm resources at seedling stage [J]. Soybean Sci, 2023, 42(4): 494-505. [韩岱, 时晓磊, 丁孙磊, 等. 60份大豆种质资源苗期耐盐性鉴定评价[J]. 大豆科学, 2023, 42(4): 494-505.]
    [37] GONG J. Effects of drought stress and re-watering on yield and growth and development of flax [D]. Chongqing: Southwest University, 2016. [龚静. 干旱胁迫和复水对亚麻生长发育及其产量的影响[D]. 重庆: 西南大学, 2016.]
    [38] DONG F H. Effects of drought stress and rehydration on the growth and development of different varieties of Fagopyrum tataricum [D]. Linfen: Shanxi Normal University, 2020. [董馥慧. 不同时期干旱胁迫及复水对不同品种苦荞生长发育的影响[D]. 临汾: 山西师范大学, 2020.]
    [39] WANG X R, LIU Z X, ZHANG Y J, et al. Evaluation on drought resistance of soybean germplasm resources at multiple growth periods [J]. J Plant Genet Resour, 2021, 22(6): 1582-1594. [王兴荣, 刘章雄, 张彦军, 等. 大豆种质资源不同生育时期抗旱性鉴定评价[J]. 植物遗传资源学报, 2021, 22(6): 1582-1594. doi: 10.13430/j.cnki.jpgr. 20210430002.]
    [40] XU L X. Evaluation of alkaline tolerance of soybean germplasm resources at different growth stages [D]. Harbin: Northeast Agricultural University, 2018. [徐玲秀. 大豆种质资源不同生育时期耐碱性评价[D]. 哈尔滨: 东北农业大学, 2018.]
    [41] ZHENG D F, LIANG X L, ZUO Y H, et al. Pathogen (Fusarium oxysporum) of soybean root rot impacting on biochemical and physiological indexes of soybean seedling [J]. Chin J Oil Crop Sci, 2004, 26(3): 57-61. [郑殿峰, 梁喜龙, 左豫虎, 等. 大豆根腐病菌对大豆幼苗生理生化指标的影响[J]. 中国油料作物学报, 2004, 26(3): 57-61. doi: 10.3321/j.issn:1007-9084.2004.03.013.]
    [42] ZHOU H B, XU G D, LIU P, et al. Developments of peroxidase isozymes during seed germination of soybean [J]. Seed, 2002(1): 9-12. [周化斌, 徐根娣, 刘鹏, 等. 大豆种子萌发中过氧化物酶同工酶的动态研究[J]. 种子, 2002(1): 9-12. doi: 10.3969/j.issn.1001-4705. 2002.01.003.]
    [43] GUO H L, MA C M, DONG S K, et al. Absorption and utilization of different nitrogen sources during the growth of soybean plant [J]. J Nucl Agric Sci, 2008, 22(3): 338-342. [郭海龙, 马春梅, 董守坤, 等. 春大豆生长中对不同氮源的吸收利用[J]. 核农学报, 2008, 22(3): 338-342.]
    [44] ZHANG Z Y, LI X, WANG Y, et al. Salt tolerance evaluation and salt tolerance index screening of 59 alfalfa germplasm materials at seedling stage [J]. Acta Agrest Sin, 2020, 28(1): 112-121. [张则宇, 李雪, 王焱, 等. 59份苜蓿种质材料苗期耐盐性评价及耐盐指标筛选[J]. 草地学报, 2020, 28(1): 112-121. doi: 10.11733/j.issn.1007-0435.2020.01.013.]
    [45] DUAN Y J, CAO S L, YU T, et al. Identification of salt tolerance during germination of maize inbred lines [J]. Crops, 2022, 38(1): 213- 219. [段雅娟, 曹士亮, 于滔, 等. 玉米自交系萌发期耐盐性鉴定[J]. 作物杂志, 2022, 38(1): 213-219. doi: 10.16035/j.issn.1001-7283.2022. 01.032.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱婷,马玲,冯灏怡,邓楠,刘心亮,刘明骞.离子型稀土矿废弃地剑豆耐性种质筛选[J].热带亚热带植物学报,2024,32(4):465~474

复制
分享
文章指标
  • 点击次数:82
  • 下载次数: 4474
  • HTML阅读次数: 3864
  • 引用次数: 0
历史
  • 收稿日期:2023-04-14
  • 最后修改日期:2023-08-28
  • 在线发布日期: 2024-08-21
文章二维码