拟南芥CaM5的不同剪接产物对其蛋白质结合活性的影响
作者:
基金项目:

广东省自然科学基金项目(2020A1515011423)资助


Effects of Different Alternative Splicing of Arabidopsis CaM5 on Its Protein-binding Activity
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    钙离子(Ca2+)/钙调素(calmodulin, CaM)信号参与植物生长发育和对外界刺激响应的调节。拟南芥(Arabidopsis thaliana) CaM家族共有7个基因,编码的蛋白质氨基酸序列具有高度保守性。该研究通过酵母双杂交及生物信息学分析等方法,对CaM5的2个剪接体CaM5.1和CaM5.3进行蛋白结合活性分析。结果表明,拟南芥钙调素结合蛋白(calmodulin-binding protein, CaMBP) IQM3 (IQ motif-containing protein 3)能在酵母中与除CaM5.3外的CaM家族的成员结合。生物信息学分析表明, CaM5.3比CaM5.1和其他CaM亚型成员多出1个由35个氨基酸残基组成的C-末端序列(C-terminal domain, CTD),可能影响CaM5.3与IQM3结合。在CaM5.1的C-末端添加CML10的CTD,将重组蛋白与IQM3进行结合,证实CaM5.3的CTD是影响其与IQM3结合的关键序列。因此,拟南芥CaM5的不同剪接方式影响其蛋白结合活性,为研究钙调素及钙调素结合蛋白的结合活性提供参考。

    Abstract:

    Calcium (Ca2+)/calmodulin (Cam) signals are involved in the regulation of plant growth and development and response to external stimuli. The Arabidopsis thaliana contains seven genes in CaM family, which encoding proteins with highly conserved amino acid sequence. The protein binding activities of CaM5 splicosomes CaM5.1 and CaM 5.3 were analyzed by yeast two-hybrid and bioinformatics analysis. The results showed that the Arabidopsis calmodulin-binding protein (CaMBP) IQM3 (IQ motif-containing protein 3) could bind to members of CaM family except CaM5.3 in yeast. The bioinformatic analysis revealed that CaM5.3 had one more C-terminal domain (CTD) consisting of 35 amino acid residues than CaM5.1 and other CaM subtypes, which might affect the binding of CaM5.3 to IQM3. CTD of CML10 was added to the C-terminal of CaM5.1, the recombinant protein was binded to IQM3, confirming that CTD of CaM5.3 was the key sequence affecting its binding to IQM3. Therefore, different splicing modes of CaM5 in A. thaliana affect its protein-binding activity, which providing reference for studying the binding activities of calmodulin and calmodulin-binding proteins.

    参考文献
    [1] MEDVEDEV S S. Principles of calcium signal generation and transduction in plant cells [J]. Russ J Plant Physiol, 2018, 65(6): 771-783. doi: 10.1134/S1021443718060109.
    [2] YUN C H, BAI J, SUN D Y, et al. Structure of potato calmodulin PCM6: The first report of the three-dimensional structure of a plant calmodulin [J]. Acta Crystallogr D Biol Cryst, 2004, 60(7): 1214-1219. doi: 10.1107/S0907444904009771.
    [3] ISHIDA H, RAINALDI M, VOGEL H J. Structural studies of soybean calmodulin isoform 4 bound to the calmodulin-binding domain of tobacco mitogen-activated protein kinase phosphatase-1 provide insights into a sequential target binding mode [J]. J Biol Chem, 2009, 284(41): 28292-28305. doi: 10.1074/jbc.M109.025080.
    [4] ANDREWS C, XU Y T, KIRBERGER M, et al. Structural aspects and prediction of calmodulin-binding proteins [J]. Int J Mol Sci, 2020, 22(1): 308. doi: 10.3390/ijms22010308.
    [5] O’DAY D H. CaMBOT: Profiling and characterizing calmodulin-binding proteins [J]. Cell Signal, 2003, 15(4): 347-354. doi: 10.1016/ S0898-6568(02)00116-X.
    [6] POOVAIAH B W, DU L Q, WANG H Z, et al. Recent advances in calcium/calmodulin-mediated signaling with an emphasis on plant-microbe interactions [J]. Plant Physiol, 2013, 163(2): 531-542. doi: 10.1104/pp.113.220780.
    [7] MCCORMACK E, BRAAM J. Calmodulins and related potential calcium sensors of Arabidopsis [J]. New Phytol, 2003, 159(3): 585-598. doi: 10.1046/j.1469-8137.2003.00845.x.
    [8] LANDONI M, DE FRANCESCO A, GALBIATI M, et al. A loss-of-function mutation in Calmodulin 2 gene affects pollen germination in Arabidopsis thaliana [J]. Plant Mol Biol, 2010, 74(3): 235-247. doi: 10. 1007/s11103-010-9669-5.
    [9] MCCORMACK E, TSAI Y C, BRAAM J. Handling calcium signaling: Arabidopsis CaMs and CMLs [J]. Trends Plant Sci, 2005, 10(8): 383-389. doi: 10.1016/j.tplants.2005.07.001.
    [10] ZOU Z M, ZOU H X, ZHANG H, et al. Studies on alternative splicing variants of rice OsHDT703 gene [J]. Acta Agric Boreali-Sin, 2019, 34(4): 9-15. [邹志明, 邹海霞, 张焕, 等. 水稻OsHDT703基因的可变剪接体分析[J]. 华北农学报, 2019, 34(4): 9-15. doi: 10.7668/hbn xb.201751587.]
    [11] ECKARDT N A. The plant cell reviews alternative splicing [J]. Plant Cell, 2013, 25(10): 3639. doi: 10.1105/tpc.113.251013.
    [12] REDDY A S N, MARQUEZ Y, KALYNA M, et al. Complexity of the alternative splicing landscape in plants [J]. Plant Cell, 2013, 25(10): 3657-3683. doi: 10.1105/tpc.113.117523.
    [13] HAO X F, WU Z J, MA T, et al. Alternative splicing of plant genes: Full of change, sail with wind [J]. Chin Bull Bot, 2022, 57(5): 661-672. [郝雪峰, 毋张晶, 马甜, 等. 植物基因选择性剪接: 断舍离合, 达权知变[J]. 植物学报, 2022, 57(5): 661-672. doi: 10.11983/CBB 22041.]
    [14] TIAN C E, ZHOU Y P. Research progress in plant IQ motif-containing calmodulin-binding proteins [J]. Chin Bull Bot, 2013, 48(4): 447-460. [田长恩, 周玉萍. 植物具IQ基序的钙调素结合蛋白的研究进展[J]. 植物学报, 2013, 48(4): 447-460. doi: 10.3724/SP.J.1259.2013.00447.]
    [15] ZHOU Y P, CHEN Y Z, YAMAMOTO K T, et al. Sequence and expression analysis of the Arabidopsis IQM family [J]. Acta Physiol Plant, 2010, 32(1): 191-198. doi: 10.1007/s11738-009-0398-9.
    [16] ZHOU Y P, DUAN J, FUJIBE T, et al. AtIQM1, a novel calmodulin-binding protein, is involved in stomatal movement in Arabidopsis [J]. Plant Mol Biol, 2012, 79(4): 333-346. doi: 10.1007/s11103-012-9915-0.
    [17] CHO K M, NGUYEN H T K, KIM S Y, et al. CML 10, a variant of calmodulin, modulates ascorbic acid synthesis [J]. New Phytol, 2016, 209(2): 664-678. doi: 10.1111/nph.13612.
    [18] ZHANG M J, TANAKA T, IKURA M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin [J]. Nat Struct Biol, 1995, 2(9): 758-767. doi: 10.1038/nsb0995-758.
    [19] FENG Y D, WEI Q. Diversity of the modes for calmodulin binding to its targets [J]. Prog Chem, 2012, 24(10): 2028-2039. [冯业丹, 魏群. 钙调素与靶蛋白结合模式的多样性[J]. 化学进展, 2012, 24(10): 2028-2039.]
    [20] WU C T, FAN T, LÜ T X, et al. Recent advances in calmodulin binding protein involved in plant responses to adversity stresses [J]. J Trop Subtrop Bot, 2022, 30(6): 823-834. [吴春婷, 范甜, 吕天晓, 等. 钙调素结合蛋白参与调控植物逆境胁迫的研究进展[J]. 热带亚热带植物学报, 2022, 30(6): 823-834. doi: 10.11926/jtsb.4711.]
    [21] ZUO N, CHEN J, LÜ Y G. Advance progress in plant calmodulin and calmodulin-binding proteins structure biology [J]. Cereals Oils, 2016, 29(9): 1-5. [左娜, 陈洁, 吕莹果. 植物钙调素及其结合蛋白的结构生物学进展[J]. 粮食与油脂, 2016, 29(9): 1-5. doi: 10.3969/j.issn. 1008-9578.2016.09.001.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李树强,余洁雨,王韫慧,吕天晓,范甜,周玉萍,田长恩.拟南芥CaM5的不同剪接产物对其蛋白质结合活性的影响[J].热带亚热带植物学报,2024,32(4):458~464

复制
分享
文章指标
  • 点击次数:107
  • 下载次数: 4535
  • HTML阅读次数: 3886
  • 引用次数: 0
历史
  • 收稿日期:2023-04-01
  • 最后修改日期:2023-05-08
  • 在线发布日期: 2024-08-21
文章二维码