菱叶绣线菊彩叶园艺品种‘粉霜’和‘黄金喷泉’的叶绿体基因组研究
作者:
基金项目:

杭州西湖风景名胜区(市园文局、市运保委)科技发展计划项目(2018-006)资助


Chloroplast Genome Analyses of Spiraea × vanhouttei ‘Pink Ice’ and ‘Gold Fountain’
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于菱叶绣线菊(Spiraea×vanhouttei)培育出了很多的彩叶园艺品种,其中‘粉霜’彩叶绣线菊(‘Pink Ice’)和‘黄金喷泉’菱叶绣线菊(‘Gold Fountain’)是两个性状优良的品种,这两个彩叶品种的形成机制尚缺乏深入研究。该研究基于二代测序的浅层测序技术,对‘粉霜’和‘黄金喷泉’的叶绿体基因组进行组装、注释、绘制其叶绿体基因组图谱;结合网上已有的绣线菊属植物的叶绿体全基因组开展比较基因组学研究。结果表明,两个品种的叶绿体基因组均为典型的四分体结构,即含有1个LSC、1个SSC及2个IR;‘粉霜’和‘黄金喷泉’的叶绿体基因组大小分别为155 953和155 941 bp,各含有130个基因,包括85个蛋白编码基因,37个转运RNA基因和8个核糖体RNA基因;分别含有67、69个简单重复序列,其中,单核苷酸重复序列最多。筛选出这两个叶绿体基因组内7个高变异区域,分别为trnH_GUG-psbAtrnK_UUUtrnR_UCU-atpAtrnT_ GCU-psbDndhCrpl32ycf1。菱叶绣线菊、‘粉霜’和‘黄金喷泉’虽有非常近缘的关系,但并未聚成单系。该研究首次获得了两种绣线菊属彩叶品种的叶绿体基因组,为进一步理解绣线菊属及其彩叶园艺品种的亲缘关系提供了大量有用信息,并为今后该属更多园艺资源的发掘奠定了基础。

    Abstract:

    Several foliage horticultural varieties have been bred based on Spiraea × vanhouttei, including ‘Pink Ice’ and ‘Gold Fountain’, which exhibit excellent horticultural traits. However, the underlying mechanism of these two colorful leaf varieties remain poorly understood. To address this knowledge gap, the complete chloroplast genomes of ‘Pink Ice’ and ‘Gold Fountain’ were assembled by using genome skimming sequencing. Comparative genomic analysis of all available chloroplast genomes of the genus Spiraea to date was studied, including variation hotspot analysis, simple repetitive sequence analysis, and phylogenetic analysis. The results showed that both varieties had a typical quadripartite structure, consisting of one LSC, one SSC, and two IRs. The chloroplast genomes of ‘Pink Ice’ and ‘Gold Fountain’ were 155 953 and 155 941 bp in size, respectively, and each contains 130 genes, including 85 protein-coding genes, 37 transfer RNA genes and 8 ribosomal RNA genes. The two chloroplast genomes also contained 67 and 69 simple repetitive sequences, respectively, with single nucleotide repeat sequences being the most abundant. There were seven highly variable regions within these two chloroplast genomes, including trnH_GUG-psbA, trnK_UUU, trnR_UCU-atpA, trnT_GCU-psbD, ndhC, rpl32, and ycf1. Finally, phylogenetic analysis revealed that ‘Pink Ice’ and ‘Gold Fountain’ could not be considered a monophyletic group, despite their close relationship. Overall, these would provide valuable insights into the chloroplast genomes of two foliage varieties of Spiraea, which would aid in the development of more horticultural resources for this genus in the future.

    参考文献
    [1] RAVEN J A, ALLEN J F. Genomics and chloroplast evolution:What did cyanobacteria do for plants?[J]. Genome Biol, 2003, 4(3):209. doi:10.1186/gb-2003-4-3-209.
    [2] SHINOZAKI K, OHME M, TANAKA M, et al. The complete nucleotide sequence of the tobacco chloroplast genome:Its gene organization and expression[J]. EMBO J, 1986, 5(9):2043-2049. doi:10.1002/j.1460-2075.1986.tb04464.x.
    [3] OHYAMA K, FUKUZAWA H, KOHCHI T, et al. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA[J]. Nature, 1986, 322(6079):572-574. doi:10.1038/322572a0.
    [4] FAN L J. Plant Genomics[M]. Beijing:Science Press, 2020:181-183.[樊龙江. 植物基因组学[M]. 北京:科学出版社, 2020:181-183.]
    [5] STRAUB S C K, PARKS M, WEITEMIER K, et al. Navigating the tip of the genomic iceberg:Next-generation sequencing for plant systematics[J]. Am J Bot, 2012, 99(2):349-364. doi:10.3732/ajb.1100335.
    [6] RAUWOLF U, GOLCZYK H, GREINER S, et al. Variable amounts of DNA related to the size of chloroplasts:III. Biochemical determinations of DNA amounts per organelle[J]. Mol Genet Genom, 2010, 283(1):35-47. doi:10.1007/s00438-009-0491-1.
    [7] DIERCKXSENS N, MARDULYN P, SMITS G. NOVOPlasty:De novo assembly of organelle genomes from whole genome data[J]. Nucleic Acids Res, 2017, 45(4):e18. doi:10.1093/nar/gkw955.
    [8] JIN J J, YU W B, YANG J B, et al. GetOrganelle:A fast and versatile toolkit for accurate de novo assembly of organelle genomes[J]. Genome Biol, 2020, 21(1):241. doi:10.1186/s13059-020-02154-5.
    [9] SHI L C, CHEN H M, JIANG M, et al. CPGAVAS2, an integrated plastome sequence annotator and analyzer[J]. Nucl Acids Res, 2019, 47(W1):W65-W73. doi:10.1093/nar/gkz345.
    [10] GREINER S, RAUWOLF U, MEURER J, et al. The role of plastids in plant speciation[J]. Mol Ecol, 2011, 20(4):671-691. doi:10.1111/j. 1365-294X.2010.04984.x.
    [11] PARK H S, JEON J H, CHO W, et al. High-throughput discovery of plastid genes causing albino phenotypes in ornamental chimeric plants[J]. Hort Res, 2022, 10(1):uhac246. doi:10.1093/hr/uhac246.
    [12] ZHOU Y, ZHOU H G, ZHANG X L. The study on variegation and chimerism in ornamental plants[J]. J Guangxi Agric Biol Sci, 1999, 18(4):304-309.[周焱, 周厚高, 张西丽. 观赏植物花叶现象研究现状[J]. 广西农业生物科学, 1999, 18(4):304-309.]
    [13] POTTER D, ERIKSSON T, EVANS R C, et al. Phylogeny and classification of Rosaceae[J]. Plant Syst Evol, 2007, 266(1):5-43. doi:10.1007/s00606-007-0539-9.
    [14] ZHANG S D, JIN J J, CHEN S Y, et al. Diversification of Rosaceae since the late Cretaceous based on plastid phylogenomics[J]. New Phytol, 2017, 214(3):1355-1367. doi:10.1111/nph.14461.
    [15] WU Z Y, Peter H R. Flora of China, Vol. 9[M]. Beijing:Science Press & St. Louis:Missouri Botanical Garden Press, 2003:47-73.
    [16] CHENG Y H, WU R H. Plant resource and application in garden of Spiraea in Heilongjiang Province[J]. For Invest Des, 2008(2):62-63.[程银虎, 武荣贵. 黑龙江省绣线菊属植物资源及在园林中的应用[J]. 林业勘查设计, 2008(2):62-63.]
    [17] QIN H, ZHU X X, ZHANG X, et al. Characterization of the complete plastome of Spiraea trilobata (Rosaceae), a perennial shrub[J]. Mitochondrial DNA B, 2022, 7(1):249-250. doi:10.1080/23802359. 2021.2018948.
    [18] YANG J Y, KANG G H, PAK J H, et al. Characterization and comparison of two complete plastomes of Rosaceae species (Potentilla dickinsii var. glabrata and Spiraea insularis) endemic to Ulleung Island, Korea[J]. Int J Mol Sci, 2020, 21(14):4933. doi:493310.3390/ijms21144933.
    [19] SHEN W Y, LIN J, LIN H F. The chloroplast genome of Spiraea thunbergii (Rosaceae)[J]. Mitochondrial DNA B, 2022, 7(10):1879-1881. doi:10.1080/23802359.2022.2135406.
    [20] MA Y J, GUO Y P, ZHU Y, et al. The complete chloroplast genome of Spiraea mongolica maxim[J]. Mitochondrial DNA B, 2021, 6(5):1614-1616. doi:10.1080/23802359.2021.1926351.
    [21] HUO Y, YAN M, ZHAO X Q, et al. The complete chloroplast genome sequence of Spiraea blumei G. Don (Rosaceae)[J]. Mitochondrial DNA B, 2019, 4(2):3671-3672. doi:10.1080/23802359.2019.1678434.
    [22] WANG Q, CHEN M M, HU X F, et al. The complete chloroplast genome sequence of Spiraea japonica var. acuminata Franch. (Rosaceae)[J]. Mitochondrial DNA B, 2022, 7(1):275-276. doi:10. 1080/23802359.2022.2028590.
    [23] CHEN M M, WANG R H, SHA H K, et al. The complete chloroplast genome sequence of Spiraea ×vanhouttei (Briot) Zabel (Rosaceae)[J]. Mitochondrial DNA B, 2022, 7(3):505-506. doi:10.1080/23802359. 2022.2052369.
    [24] DOYLE J J, DOYLE J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochem Bull, 1987, 19:11-15.
    [25] TILLICH M, LEHWARK P, PELLIZZER T, et al. GeSeq:Versatile and accurate annotation of organelle genomes[J]. Nucleic Acids Res, 2017, 45(W1):W6-W11. doi:10.1093/nar/gkx391.
    [26] KEARSE M, MOIR R, WILSON A, et al. Geneious basic:An integrated and extendable desktop software platform for the organization and analysis of sequence data[J]. Bioinformatics, 2012, 28(12):1647-1649. doi:10.1093/bioinformatics/bts199.
    [27] GREINER S, LEHWARK P, BOCK R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1:Expanded toolkit for the graphical visualization of organellar genomes[J]. Nucl Acids Res, 2019, 47(W1):W59-W64. doi:10.1093/nar/gkz238.
    [28] KURTZ S, CHOUDHURI J V, OHLEBUSCH E, et al. REPuter:The manifold applications of repeat analysis on a genomic scale[J]. Nucl Acids Res, 2001, 29(22):4633-4642. doi:10.1093/nar/29.22.4633.
    [29] BEIER S, THIEL T, MÜNCH T, et al. MISA-web:A web server for microsatellite prediction[J]. Bioinformatics, 2017, 33(16):2583-2585. doi:10.1093/bioinformatics/btx198.
    [30] ROZAS J, FERRER-MATA A, SÁNCHEZ-DELBARRIO J C, et al. DnaSP 6:DNA sequence polymorphism analysis of large data sets[J]. Mol Biol Evol, 2017, 34(12):3299-3302. doi:10.1093/molbev/msx 248.
    [31] KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7:Improvements in performance and usability[J]. Mol Biol Evol, 2013, ″猰椨洴瀩氺攷?猲攭焷甸攰渮挠敤?物攺瀱攰愮琱猰??振灭卯卬剢獥??呭敳捴栰渱椰挮愼汢?爾敛猳漲畝爠捓敔獁?慁湔摁?牉敓挠潁洮洠敒湁摸慍瑌椠潶湥獲?晩潯牮?攸砺灁愠湴摯楯湬朠?捯灲猠獰牨?摬楯獧捥潮癥整物祣?慡湮摡?慹灳灩汳椠捡慮瑤椠潰湯獳?琭潡?慡?睹楳摩敳?慯牦爠慬祡?潧晥?灰汨慹湬瑯?獥灮敩捥楳敛獊孝?崠???潩汮??捲潭污?剩散獳漬甠爲??名???????????????????摤潯楩?????????橢??????ひ?????び?????社????硲??戳爳?嬠??崠?夠?丮??????偶?乬????????啤??????敩瑢?慴汩??倠桯祦氠潳杵敢潦条牭愮瀠桓楰捩?獡瑥牯畩捤瑥畡牥攠?潒景??楣?偡牥椩洠畯汦愠?潨扩据潡測椠捷慩??椠???偣物楡浬甠汲慥捦敥慲敥??楥渠晴敯爠牤敩摳?晲物潢浵?捩桯汮漠牯潦瀠汴慨獥琠?浵楢捦牡潭獩慬瑹攠汩汮椠瑴敨獥??捯灲卬卤剛獊??洠慁牣歴敡爠獐孨?嵴???捸瑯慮?偓桩祮琬漠琱愹砹漶測?匳椴渨??呼????″???????????????撿濊榚??〔????〔?慼烰猖が??????扩犄?嬃??嵝??伍乩??坦?倬??堹唹???″????????攭琳?愵氮???椾?夳挴晝ㄠ??楃???瑓栬攠?浃潈獎瑅?灗牅潉浓楓猠楇渠杍?瀠汄慅獐瑁楍摐??乌??戠慃爠捗漬搠敥?漠晡?氮愠湔摨?瀠汥慶湯瑬獵孴?嵯??卯捦椠?剨敥瀠???び????????????摭潥椠?????の???獬牡敮灴び??????扣牯?孴??嵴??剧?卮卥?坯?????删???卥传书????????瑊睝漮?汐潬捡畮獴?杍汯潬戠慂汩??丬?′戰愱爱挬漠搷收?昳漩爺′氷愳渭搲?瀷氮愠湤瑯獩?吱栰攮?挰漰搷椯湳朱??椰?爭戰挱??椹??′札攴渮攼?捲漾浛瀳氵敝洠敂湒瑁獕?瑍桁敎?渠潔測?捋潕摚楍湉李??楍?琠牓湔?灆獁扎???椦?′猶瀲愻挠敓爮?牐敬条楳潴湩孤?嵧??偯?潥匠?佶乯????はの????????整?づ???摮潵楳??ど??????橴潡甼爯湩愾氠?灃潯湮敶?ぬぶふぬ?っ???戩爺?孷??嵣?奡啤?即?塷?????????剧?卮?剳??偩伾呇呲?剭????攼琯?愾氠??偨桩祢汩潴朠敥湸祴?潮晳??楥?卧灥楮牥愠敬慯??楛???删潊猠慅捸数愠敂??戬愠猲攰搱″漬渠?瀴氨愴猩琺椹搷?愭渹搸?渮甠捤汯敩愺爱‰洮漱氰改挳甯汪慸牢?摥慲瑳愳??洮瀼汢楲挾慛琳椶潝渠獄?晎潁版?浒漠牎瀬栠潔汁潎杉楆捕慊汉?捇栬愠牏慎捏瑄故牒?攠癎漠汔甬琠楥潴渠?慬渮搠?獨祥猠瑣敯浭慰瑬楥捴獥嬠?嵬??側敩牤猠灧敥据瑯?健氠慳湥瑱??据潣汥??癦漠汴?卥礠獳瑥???つ????????の???????摮潴楨??ど?ㄠち???樠?灲灹数整獯??の????ち??ねづ??um:Reduction, compaction, and accelerated evolutionary rate[J]. Genome Biol Evol, 2009, 1:439-448. doi:10. 1093/gbe/evp047.
    [37] GRAHAM S W, LAM V K Y, MERCKX V S F T. Plastomes on the edge:The evolutionary breakdown of mycoheterotroph plastid genomes[J]. New Phytol, 2017, 214(1):48-55. doi:10.1111/nph. 14398.
    [38] MOHANTA T K, MISHRA A K, KHAN A, et al. Gene loss and evolution of the plastome[J]. Genes, 2020, 11(10):1133. doi:10.3390/genes11101133.
    [39] SOLTIS D E, SMITH S A, CELLINESE N, et al. Angiosperm phylogeny:17 genes, 640 taxa[J]. Am J Bot, 2011, 98(4):704-730. doi:10.3732/ajb.1000404.
    [40] YAN H F, ZHANG C Y, WANG F Y, et al. Population expanding with the phalanx model and lineages split by environmental heterogeneity:A case study of Primula obconica in subtropical China[J]. PLoS ONE, 2012, 7(9):e41315. doi:10.1371/journal.pone.0041315.
    [41] EBERT D, PEAKALL R. Chloroplast
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张巧玲,陈琳,张淑燕,颜海飞.菱叶绣线菊彩叶园艺品种‘粉霜’和‘黄金喷泉’的叶绿体基因组研究[J].热带亚热带植物学报,2023,31(4):510~520

复制
分享
文章指标
  • 点击次数:172
  • 下载次数: 591
  • HTML阅读次数: 386
  • 引用次数: 0
历史
  • 收稿日期:2023-01-04
  • 最后修改日期:2023-02-10
  • 在线发布日期: 2023-08-04
  • 出版日期: 2023-07-20
文章二维码