气候变化下西南地区主要亚热带常绿栎属乔木地理分布研究
作者:
基金项目:

国家自然科学基金项目(31700467);西南林业大学博士科研启动基金项目(112003)资助


Geographical Distribution of Main Subtropical Evergreen Quercus Trees in Southwest China Under Climate Change
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解中国西南地区6种亚热带常绿栎属植物在未来气候情景下的潜在分布,该文利用最大熵模型(maximum entropy model, MaxEnt)和地理信息系统技术,结合帽斗栎(Quercus guyavaefolia)、川滇高山栎(Q. aquifolioides)、毛脉高山栎(Q. rehderiana)、高山栎(Q. semecarpifolia)、灰背栎(Q. senescens)和匙叶栎(Q. dolicholepis)的分布数据、生理生态特性、环境数据及未来2070s (2061—2080年)气候情景数据(SSPs126、SSPs245、SSPs585),分析了未来气候变化对各乔木种潜在地理分布的影响。结果表明,6种乔木MaxEnt模型的AUC均值均大于0.9,模拟效果好。温度季节性、年降水量、海拔、最冷月最低温和坡度等5个环境因子为6种栎属乔木分布的主导环境因子,即多适宜分布在温度季节性变化较小、温暖潮湿的山区。其中,川滇高山栎、毛脉高山栎和高山栎较其他3树种更适宜生长于温度偏低、温度季节性变化略大的中、高山地区。西南地区6种主要亚热带常绿栎属乔木潜在适宜区主要分布在西南地区,华中地区西部、华南地区西部和西北地区南部部分地区也有分布,高适宜区主要位于四川南部和云南西北部。在未来气候情景下,西南地区亚热带常绿主要栎属乔木适宜区面积以增长趋势为主,且向西北方向迁移。

    Abstract:

    In order to understand the potential distribution of six subtropical evergreen Quercus species in south-west China under future climate scenarios, based on the distribution data, physiological and ecological characteristics of six Quercus trees in Southwest China, including Q. guyavaefolia, Q. aquifolioides, Q. rehderiana, Q. semecarpifolia, Q. senescens and Q. dolicholepis, environmental data and future the 2070s (2061—2080) climate scenario data (SSPs126, SSPs245, SSPs585), Maximum Entropy (MaxEnt) model and Geographic Information System (GIS) technology were used to analyze the impact of future climate change on the potential distribution of these tree species. The results showed that the AUC values of the MaxEnt model for all six Quercus species were more than 0.9, indicating high model simulation accuracy. The main environmental factors affecting the distribution of six Quercus speciesincludedtemperature seasonality, annual precipitation, altitude, minimum temperature of coldest month and slope. Consequently, these tree species were mostly suitable for distributing in warm and humid mountainous areas with minimal seasonality temperature changes. Compared to the other three tree species, Q. aquifolioide, Q. rehderiana and Q. semecarpifolia were more suitable for growing in middle and high mountain areas with lower temperatures and slightly greater seasonal temperature changes. The potential suitable areas for these six Quercus species were southwest China, as well as western of central China, western of south China and southern of northwest China. The high suitable areas were mainly located in southern Sichuan and northwestern Yunnan. Under the future climate scenarios, the suitable areas of main subtropical evergreen Quercus trees in southwest China would expand to the northwest as a whole.

    参考文献
    [1] NI J, SONG Y C. Relationship between climate and distribution of main species of subtropical evergreen broad-leaved forest in China [J]. Acta Phytoecol Sin, 1997, 21(2): 115-129. [倪健, 宋永昌. 中国亚热带常绿阔叶林优势种及常见种分布与气候的相关分析 [J]. 植物生态学报, 1997, 21(2): 115-129.]
    [2] ZHANG X S. A vegetation-climate classification system for global change studies in China [J]. Quat Sci, 1993, 13(2): 157-169. [张新时. 研究全球变化的植被-气候分类系统 [J]. 第四纪研究, 1993, 13(2): 157-169.]
    [3] ZHANG P S. Correlation analysis between meteorologic factors and NDVI [D]. Chongqing: Southwest University, 2007. [张培松. 气象因子与NDVI的相关性分析 [D]. 重庆: 西南大学, 2007.]
    [4] MOOR H, HYLANDER K, NORBERG J. Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits [J]. AMBIO, 2015, 44(S1): 113-126. doi: 10.1007/s13280-014-0593-9.
    [5] ZHANG L, LIU S R, SUN P S, et al. Predicting the potential distribution of Phyllostachys edulis with DOMAIN and NeuralEnsembles models [J]. Sci Silv Sin, 2011, 47(7): 20-26. [张雷, 刘世荣, 孙鹏森, 等. 基于DOMAIN和NeuralEnsembles模型预测中国毛竹潜在分布 [J]. 林业科学, 2011, 47(7): 20-26.]
    [6] STOCKWELL D. The GARP modelling system: Problems and solutions to automated spatial prediction [J]. Int J Geogr Inf Sci, 1999, 13(2): 143-158. doi: 10.1080/136588199241391.
    [7] DEB C R, JAMIR N S, KIKON Z P. Distribution prediction model of a rare orchid species (Vanda bicolor Griff.) using small sample size [J]. Am J Plant Sci, 2017, 8(6): 1388-1398. doi: 10.4236/ajps.2017.86094.
    [8] PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions [J]. Ecol Model, 2006, 190(3/4): 231-259. doi: 10.1016/j.ecolmodel.2005.03.026.
    [9] DUAN Y Z, WANG C, WANG H T, et al. Predicting the potential distribution of Ammopiptanthus species in China under different climates using ecological niche models [J]. Acta Ecol Sin, 2020, 40(21): 7668-7680. [段义忠, 王驰, 王海涛, 等. 不同气候条件下沙冬青属植物在我国的潜在分布——基于生态位模型预测 [J]. 生态学报, 2020, 40(21): 7668-7680. doi: 10.5846/stxb201902210306.]
    [10] GUAN X Y, SHI W, CAO K F. Effect of climate change in future on geographical distribution of widespread Quercus acutissima and analysis of dominant climatic factors [J]. J Trop Subtrop Bot, 2018, 26(6): 661-668. [关心怡, 石慰, 曹坤芳. 未来气候变化对广布种麻栎地理分布的影响和主导气候因子分析 [J]. 热带亚热带植物学报, 2018, 26(6): 661-668. doi: 10.11926/jtsb.3898.]
    [11] PHILLIPS S J, DUDÍK M, ELITH J, et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data [J]. Ecol Appl, 2009, 19(1): 181-197. doi: 10.1890/ 07-2153.1.
    [12] CHEN L D, HU W, LI D Q, et al. Prediction of suitable distribution areas of the endangered plant wild Nelumbo nucifera Gaertn. in China [J]. Plant Sci J, 2019, 37(6): 731-740. [陈陆丹, 胡菀, 李单琦, 等. 珍稀濒危植物野生莲的适生分布区预测 [J]. 植物科学学报, 2019, 37(6): 731-740. doi: 10.11913/PSJ.2095-0837.2019.60731.]
    [13] ZHANG C X, ZHANG W, XU J J, et al. Analysis on suitability distribution of Pinus tabulaeformis in Hebei Province based on GIS and MaxEnt model [J]. Geogr Geo-Inf Sci, 2020, 36(6): 18-25. [张晨星, 张炜, 徐晶晶, 等. 基于GIS和最大熵模型的河北省油松适宜性分布分析 [J]. 地理与地理信息科学, 2020, 36(6): 18-25. doi: 10. 3969/j.issn.1672-0504.2020.06.004.]
    [14] WAN G Z, SHEN L, GUO Y X, et al. Potential geographical distribution of Forsythia suspensa (Thunb.) Vahl under climate change based on maximum entropy model [J]. Chin J Inf Trad Chin Med, 2021, 28(12): 1-6. [万广珍, 申亮, 郭延秀, 等. 基于最大熵模型预测未来气候变化背景下连翘的潜在地理分布 [J]. 中国中医药信息杂志, 2021, 28(12): 1-6. doi: 10.19879/j.cnki.1005-5304.202105437.]
    [15] CAO X P, WANG J R, LU S S, et al. Simulation of the potential distribution patterns of Picea crassifolia in climate change scenarios based on the maximum entropy (Maxent) model [J]. Acta Ecol Sin, 2019, 39(14): 5232-5240. [曹雪萍, 王婧如, 鲁松松, 等. 气候变化情景下基于最大熵模型的青海云杉潜在分布格局模拟 [J]. 生态学报, 2019, 39(14): 5232-5240. doi: 10.5846/stxb201809151999.]
    [16] YING L X, LIU Y, CHEN S T, et al. Simulation of the potential range of Pistacia weinmannifolia in southwest China with climate change based on the maximum-entropy (Maxent) model [J]. Biodiv Sci, 2016, 24(4): 453-461. [应凌霄, 刘晔, 陈绍田, 等. 气候变化情景下基于最大熵模型的中国西南地区清香木潜在分布格局模拟 [J]. 生物多样性, 2016, 24(4): 453-461. doi: 10.17520/biods.2015246.]
    [17] KREMER A, CASASOLI M, BARRENECHE T, et al. Fagaceae trees [M]// KOLE C. Forest Trees. Berlin: Springer, 2007: 161-187. doi: 10. 1007/978-3-540-34541-1_5.
    [18] HAO Q H, DAI L. Morphological diversity of Quercus pollen and its palaeoclimatic implication in tropical and subtropical China [J]. Acta Micropalaeontol Sin, 2019, 36(2): 140-150. [郝清和, 戴璐. 中国热带、亚热带栎属植物花粉形态多样性及其古气候意义 [J]. 微体古生物学报, 2019, 36(2): 140-150. doi: 10.16087/j.cnki.1000-0674. 2019.02.004.]
    [19] ZHOU Z K. Origin, phylogeny and dispersal of Quercus from China [J]. Acta Bot Yunnan, 1992, 14(3): 227-236. [周浙昆. 中国栎属的起源演化及其扩散 [J]. 云南植物研究, 1992, 14(3): 227-236.]
    [20] JIANG Y Q, WANG X, LIU Y, et al. Prediction of potential suitable area of Medicago edgeworthii in China based on MaxEnt model [J]. Grassl Turf, 2022, 42(2): 67-73. [姜颖倩, 王霞, 刘艳, 等. 基于MaxEnt模型的毛荚苜蓿在中国的潜在适生区预测 [J]. 草原与草坪, 2022, 42(2): 67-73. doi: 10.13817/j.cnki.cyycp.2022.02.010.]
    [21] ZHANG Q, ZENG F L, ZHANG D F, et al. Ecology suitability regions and ecological characteristics of Panax notoginseng (Burk.) F. H. Chen based on maximum entropy model [J]. Acta Pharm Sin, 2016, 51(10): 1629-1637. [张琴, 曾凡琳, 张东方, 等. 基于最大熵模型的三七生态适宜区及生态特征 [J]. 药学学报, 2016, 51(10): 1629-1637. doi: 10.16438/j.0513-4870.2016-0148.]
    [22] LU Y Y, YANG Y M, MA X H, et al. Ecology suitability study of Chinese materia medica Gentianae macrophyllae Radix [J]. China J Chin Mat Med, 2016, 41(17): 3176-3180. [卢有媛, 杨燕梅, 马晓辉, 等. 中药秦艽生态适宜性区划研究 [J]. 中国中药杂志, 2016, 41 (17): 3176-3180. doi: 10.4268/cjcmm20161710.]
    [23] SHAO H, TIAN J Q, GUO K, et al. Effects of sample size and species traits on performance of BIOCLIM in predicting geographical distribution of tree species: A case study with 12 deciduous Quercus species indigenous to China [J]. Chin J Plant Ecol, 2009, 33(5): 870-877. [邵慧, 田佳倩, 郭柯, 等. 样本容量和物种特征对BIOCLIM模型模拟物种分布准确度的影响——以12个中国特有落叶栎树种为例 [J]. 植物生态学报, 2009, 33(5): 870-877. doi: 10.3773/j.issn.1005-264x. 2009.05.005.]
    [24] SUN Y, QIN D H, LIU H B. Introduction to treatment of uncertainties for IPCC fifth assessment report [J]. Prog Inquisit Mutat Climatis, 2012, 8(2): 150-153. [孙颖, 秦大河, 刘洪滨. IPCC第五次评估报告不确定性处理方法的介绍 [J]. 气候变化研究进展, 2012, 8(2): 150-153. doi: 10.3969/j.issn.1673-1719.2012.02.012.]
    [25] LI X X. Ecological study on endangered mechanism of five Abies species in China [D]. Beijing: Beijing Forestry University, 2013. [李晓笑. 中国5种冷杉属植物生态濒危机制研究 [D]. 北京: 北京林业大学, 2013.]
    [26] O’NEILL B C, KRIEGLER E, RIAHI K, et al. A new scenario framework for climate change research: The concept of shared socioeconomic pathways [J]. Climat Change, 2014, 122(3): 387-400. doi: 10.1007/s10584-013-0905-2.
    [27] ZHANG J, CAO L G, LI X C, et al. Advances in shared socioeconomic pathways in IPCC AR5 [J]. Prog Inquist Mutat Climat, 2013, 9(3): 225-228. [张杰, 曹丽格, 李修仓, 等. IPCC AR5中社会经济新情景(SSPs)研究的最新进展 [J]. 气候变化研究进展, 2013, 9(3): 225-228. doi: 10.3969/j.issn.1673-1719.2013.03.012.]
    [28] JIANG T, WANG Y J, SU B D, et al. Perspectives of human activities in global climate change: Evolution of socio-economic scenarios [J]. J Nanjing Univ Inf Sci Technol (Nat Sci), 2020, 12(1): 68-80. [姜彤, 王艳君, 苏布达, 等. 全球气候变化中的人类活动视角: 社会经济情景的演变 [J]. 南京信息工程大学学报(自然科学版), 2020, 12(1): 68-80. doi: 10.13878/j.cnki.jnuist.2020.01.009.]
    [29] WU X Y, DONG S K, LIU S L, et al. Identifying priority areas for grassland endangered plant species in the Sanjiangyuan Nature Reserve based on the MaxEnt model [J]. Biodiv Sci, 2018, 26(2): 138-148. [武晓宇, 董世魁, 刘世梁, 等. 基于MaxEnt模型的三江源区草地濒危保护植物热点区识别 [J]. 生物多样性, 2018, 26(2): 138-148. doi: 10.17520/biods.2017188.]
    [30] WENG Y W, CAI W J, WANG C. The application and future directions of the Shared Socioeconomic Pathways (SSPs) [J]. Climat Change Res, 2020, 16(2): 215-222. [翁宇威, 蔡闻佳, 王灿. 共享社会经济路径(SSPs)的应用与展望 [J]. 气候变化研究进展, 2020, 16(2): 215-222. doi: 10.12006/j.issn.1673-1719.2019.078.]
    [31] ZHANG X L, DENG T, LUO L, et al. Prediction of potential suitable area of Rosa persica and study on its vulnerable mechanism [J]. Acta Bot Boreali-Occid Sin, 2021, 41(9): 1570-1582. [张晓龙, 邓童, 罗乐, 等. 单叶蔷薇潜在适宜区预测及其渐危机制研究 [J]. 西北植物学报, 2021, 41(9): 1570-1582. doi: 10.7606/j.issn.1000-4025.2021.09.1570.]
    [32] JIANG T, LU Y R, HUANG J L, et al. New scenarios of CMIP6 model (SSP-RCP) and its application in the Huaihe River Basin [J]. Adv Meteorol Sci Technol, 2020, 10(5): 102-109. [姜彤, 吕嫣冉, 黄金龙, 等. CMIP6模式新情景(SSP-RCP)概述及其在淮河流域的应用 [J]. 气象科技进展, 2020, 10(5): 102-109.]
    [33] SHIRK A J, CUSHMAN S A, WARING K M, et al. Southwestern white pine (Pinus strobiformis) species distribution models project a large range shift and contraction due to regional climatic changes [J]. For Ecol Manag, 2018, 411: 176-186. doi: 10.1016/j.foreco.2018.01.025.
    [34] ZHOU T J, CHEN Z M, CHEN X L, et al. Interpreting IPCC AR6: Future global climate based on projection under scenarios and on near-term information [J]. Climat Change Res, 2021, 17(6): 652-663. [周天军, 陈梓明, 陈晓龙, 等. IPCC AR6报告解读: 未来的全球气候——基于情景的预估和近期信息 [J]. 气候变化研究进展, 2021, 17(6): 652-663. doi: 10.12006/j.issn.1673-1719.2021.239.]
    [35] HE C Q, XUE J H, WU Y B, et al. Rainfall redistribution in subalpine Quercus aquifolioides forest in upper reaches of Minjiang River [J]. Chin J Appl Ecol, 2008, 19(9): 1871-1876. [何常清, 薛建辉, 吴永波, 等. 岷江上游亚高山川滇高山栎林的降雨再分配 [J]. 应用生态学报, 2008, 19(9): 1871-1876.]
    [36] REN G P, YANG Y, HE X D, et al. Habitat evaluation and conservation framework of the newly discovered and critically endangered black snub-nosed monkey [J]. Biol Conserv, 2017, 209: 273-279. doi: 10. 1016/j.biocon.2017.02.029.
    [37] PARKER L E, ABATZOGLOU J T. Comparing mechanistic and empirical approaches to modeling the thermal niche of almond [J]. Int J Biometeorol, 2017, 61(9): 1593-1606. doi: 10.1007/s00484-017-1338-9.
    [38] ZHUANG H F, QIN H, WANG W, et al. Prediction of the potential suitable distribution of Taxus yunnanensis based on MaxEnt model [J]. J Shanxi Univ (Nat Sci), 2018, 41(1): 233-240. [庄鸿飞, 秦浩, 王伟, 等. 基于MaxEnt模型的云南红豆杉潜在适宜分布预测 [J]. 山西大学学报(自然科学版), 2018, 41(1): 233-240. doi: 10.13451/j.cnki. shanxi.univ(nat.sci.).2018.01.030.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵彩云,陆双飞,李荣亮,殷晓洁,滕皎,高伟杰,王妍.气候变化下西南地区主要亚热带常绿栎属乔木地理分布研究[J].热带亚热带植物学报,2024,32(3):357~366

复制
分享
文章指标
  • 点击次数:207
  • 下载次数: 3334
  • HTML阅读次数: 3250
  • 引用次数: 0
历史
  • 收稿日期:2022-12-02
  • 最后修改日期:2023-04-10
  • 在线发布日期: 2024-06-04
文章二维码