混交比例对桉树-乡土树种混交林优势树种叶片资源获取性状的影响
作者:
基金项目:

广东省重点领域研发计划项目(2020B1111530004);中国科学院青年创新促进会会员项目(2019340);国家自然科学基金项目(31770473); 广东省林业科技创新项目(2022KJCX003)资助


Effect of Mixed Proportions on Leaf Resource Acquisition Capability in Mixed Plantations of Eucalyptus and Native Trees
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    桉树-乡土树种混交林在提高林分生产力和生态系统功能等方面具有较大潜力。该研究以南亚热带4种桉树-乡土树种混交林(桉树与乡土树种混交比例分别为5:5、6:4、7:3、8:2)和桉树纯林为研究对象,研究了3种优势乡土树种华润楠(Machilus chinensis)、阴香(Cinnamomum burmannii)、灰木莲(Manglietia glauca)和速生树种尾叶桉(Eucalyptus urophylla)的叶片生理、结构和化学性状在不同比例混交林中的差异。结果表明, 4优势造林树种的叶片性状存在明显的种间差异,其中灰木莲的比叶面积(SLA)、光合磷利用效率(PPUE)、单位质量叶片最大光合速率(Amass)和蒸腾速率(Tmass)以及叶片养分含量最高,说明灰木莲采取资源获取型的生态策略;尾叶桉的SLA、Amass、Tmass及叶片养分含量最低,但具有最高的PPUE,说明尾叶桉兼顾了资源获取型和保守型的物种特征。灰木莲与尾叶桉在SLA、Amass、Tmass、PPUE、叶片氮含量和氮磷比等叶片性状上几乎没有任何重叠,说明灰木莲与尾叶桉之间的叶片资源利用高度互补,可能是与尾叶桉混交的理想树种。物种水平上,灰木莲叶片氮含量、华润楠叶片磷含量以及干季时阴香叶片Amass和PPUE随乡土树种混交比例增加有增加的趋势,但总体上树种混交比例对于4造林树种的叶片结构、化学和生理性状的影响不大;林分水平上,桉树-乡土树种混交林的比叶面积、光合能力以及叶片氮磷比显著高于尾叶桉纯林,说明桉树与乡土树种混交能够提高林分整体的光捕获和光合能力,但同时也加剧了植物生长的磷限制。因此,建议在未来南亚热带桉树人工林的构建与改造中,应优先挑选与桉树资源利用互补并能够优化混交林磷素循环利用的乡土树种。

    Abstract:

    Mixed-species plantations composed of Eucalyptus and native tree species have great potential in improving stand productivity and ecosystem functions. In this study, we investigated leaf physiological, structural and chemical traits of three dominant native tree species (Machilus chinensis, Cinnamomum burmannii and Manglietia glauca) and Eucalyptus urophylla in Eucalyptus monocultures (EM) and four mixtures of Eucalyptus (EU) and native trees species (NS) with different mixed proportions (EU:NS=5:5, 6:4, 7:3, 8:2, respectively) in south China. The results showed that there was substantial interspecific variation in leaf traits among four dominant tree species. On average, M. glauca had the highest SLA, PPUE, Amass, Tmass, Nmass and Pmass, indicating that M. glauca adopts resource acquisition strategies. E. urophylla had the lowest SLA, PPUE, Amass, Tmass, Nmass, Pmass but the highest PNUE, indicating that E. urophylla occupies characteristics typical of fast-growing and nutrient-conserving in order to adapt nutrient-poor environments. There was nearly no overlap between M. glauca and E. urophylla in leaf traits, such as SLA, N:P, Amass, Tmass, PPUE and Nmass, indicating that M. glauca and E. urophylla were highly complementary in the leaf resource use. Manglietia glauca may be an ideal candidate tree species for establishing mixed plantations of Eucalyptus and native tree species. At the species level, Nmass of M. glauca, Pmass of M. chinensis, Amass and PPUE of C. burmannii in dry season increased with the mixed proportion of native species, but leaf traits of four dominant tree species were generally not affected by the mixed proportion as a whole. At the stand level, SLA, PPUE, Amass, Tmass and N:P in mixtures of Eucalyptus and native species were significantly higher than those in Eucalyptus monocultures. Thus, plantations established with Eucalyptus and high diversity native tree species can improve the light capture and photosynthetic capability from the stand level, but also aggravate the phosphorus limitation of plant growth. Overall, it was suggested that native species with complementary resource use to Eucalyptus and capability of optimizing phosphorus biogeochemical cycle of mixed plantations should be prioritized in designing and improving the Eucalyptus plantations in south China.

    参考文献
    [1] PBOYLE J R, WINJUM J K, KAVANAGH K, et al. Planted Forests: Contributions to the Quest for Sustainable Societies[M]. Dordrecht: Kluwer Academic Publishers, 1999.
    [2] LUO S M, HE D J, XIE Y L, et al. Effect of stand density on community structure and ecological effect of Eucalyptus urophylta×E. eamalducensis plantation[J]. J Trop Subtrop Bot, 2010, 18(4): 357-363.[罗素梅, 何东进, 谢益林, 等. 林分密度对尾赤桉人工林群落结构与生态效应的影响研究[J]. 热带亚热带植物学报, 2010, 18(4): 357-363. doi: 10.3969/j.issn.1005-3395.2010.04.003.]
    [3] WILLIAMS R A. Mitigating biodiversity concerns in Eucalyptus plantations located in south China[J]. J Biosci Med, 2015, 3(6): 1-8. doi: 10.4236/jbm.2015.36001.
    [4] BRANCALION P H S, AMAZONAS N T, CHAZDON R L, et al. Exotic eucalypts: From demonized trees to allies of tropical forest restoration?[J]. J Appl Ecol, 2020, 57(1): 55-66. doi: 10.1111/1365-2664.13513.
    [5] ZHOU X G, ZHU H G, WEN Y G, et al. Intensive management and declines in soil nutrients lead to serious exotic plant invasion in Eucalyptus plantations under successive short-rotation regimes[J]. Land Degrad Dev, 2020, 31(3): 297-310. doi: 10.1002/ldr.3449.
    [6] BAUHUS J, VAN WINDEN A P, NICOTRA A B. Aboveground interactions and productivity in mixed-species plantations of Acacia mearnsii and Eucalyptus globulus[J]. Can J For Res, 2004, 34(3): 686-694. doi: 10.1139/X03-243.
    [7] ZHANG H, GUAN D S, SONG M W. Biomass and carbon storage of Eucalyptus and Acacia plantations in the Pearl River Delta, south China[J]. For Ecol Manage, 2012, 277: 90-97. doi: 10.1016/j.foreco. 2012.04.016.
    [8] FORRESTER D I, BAUHUS J, COWIE A L. Nutrient cycling in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii[J]. Can J For Res, 2005, 35(12): 2942-2950. doi: 10.1139/X05-214.
    [9] SANTOS F M, CHAER G M, DINIZ A R, et al. Nutrient cycling over five years of mixed-species plantations of Eucalyptus and Acacia on a sandy tropical soil[J]. For Ecol Manage, 2017, 384: 110-121. doi: 10. 1016/j.foreco.2016.10.041.
    [10] MONTAGNINI F. Accumulation in above-ground biomass and soil storage of mineral nutrients in pure and mixed plantations in a humid tropical lowland[J]. For Ecol Manage, 2000, 134(1-3): 257-270. doi: 10.1016/S0378-1127(99)00262-5.
    [11] SCHERER-LORENZEN M, KÖRNER C, SCHULZE E D. Forest Diversity and Function: Temperate and Boreal Systems[M]. Berlin: Springer-Verlag, 2005.
    [12] KELTY M J. The role of species mixtures in plantation forestry[J]. For Ecol Manage, 2006, 233(2/3): 195-204. doi: 10.1016/j.foreco.2006.05. 011.
    [13] MILLAR C I, STEPHENSON N L, STEPHENS S L, et al. Climate change and forests of the future: Managing in the face of uncertainty[J]. Ecol Appl, 2007, 17(8): 2145-2151. doi: 10.1890/06-1715.1.
    [14] FELTON A, NILSSON U, SONESSON J, et al. Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden[J]. Ambio, 2016, 45(2): 124-139. doi: 10.1007/s13280-015-0749-2.
    [15] LARSEN J B, NIELSEN A B. Nature-based forest management: Where are we going? Elaborating forest development types in and with practice[J]. For Ecol Manage, 2007, 238(1/2/3): 107-117. doi: 10. 1016/j.foreco.2006.09.087.
    [16] AMAZONAS N T, FORRESTER D I, OLIVEIRA R S, et al. Combining Eucalyptus wood production with the recovery of native tree diversity in mixed plantings: Implications for water use and availability[J]. For Ecol Manage, 2018, 418: 34-40. doi: 10.1016/j.foreco.2017. 12.006.
    [17] REICH P B. The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto[J]. J Ecol, 2014, 102(2): 275-301. doi: 10.1111/1365-2745.12211.
    [18] LIU X J, MA K P. Plant functional traits-concepts, applications and future directions[J]. Sci Sin Vitae, 2015, 45(4): 325-339.[刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45(4): 325-339. doi: 10.1360/N052014-00244.]
    [19] MCDOWELL N, ALLEN C D, ANDERSON-TEIXEIRA K, et al. Drivers and mechanisms of tree mortality in moist tropical forests[J]. New Phytol, 2018, 219(3): 851-869. doi: 10.1111/nph.15027.
    [20] KUNSTLER G, FALSTER D, COOMES D A, et al. Plant functional traits have globally consistent effects on competition[J]. Nature, 2016, 529(7585): 204-207. doi: 10.1038/nature16476.
    [21] ROA-FUENTES L L, TEMPLER P H, CAMPO J. Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico[J]. Oecologia, 2015, 179(2): 585-597. doi: 10.1007/s00442-015-3354-y.
    [22] CHEN C, CHEN H Y H, CHEN X L. Functional diversity enhances, but exploitative traits reduce tree mixture effects on microbial biomass[J]. Funct Ecol, 2020, 34(1): 276-286. doi: 10.1111/1365-2435.13459.
    [23] ROSENFIELD M V, KELLER J K, CLAUSEN C, et al. Leaf traits can be used to predict rates of litter decomposition[J]. Oikos, 2020, 129(10): 1589-1596. doi: 10.1111/oik.06470.
    [24] WANG Q, PAN P, OUYANG X Z, et al. Intraspecific and interspecific competition intensity in mixed plantation with different proportion of Pinus massoniana and Schima superba[J]. Chin J Ecol, 2021, 40(1): 49-57.[汪清, 潘萍, 欧阳勋志, 等. 马尾松-木荷不同比例混交林种内和种间竞争强度[J]. 生态学杂志, 2021, 40(1): 49-57. doi: 10. 13292/j.1000-4890.202101.016.]
    [25] SANTOS, MARTINI F, BALIEIRO, et al. Dynamics of aboveground biomass accumulation in monospecific and mixed-species plantations of Eucalyptus and Acacia on a Brazilian sandy soil[J]. For Ecol Manage, 2016, 363: 86-97. doi: 10.1016/j.foreco.2015.12.028.
    [26] DEL RÍO, PRETZSCH M, ALBERDI H, et al. Characterization of the structure, dynamics, and productivity of mixed-species stands: Review and perspectives[J]. Eur J For Res, 2016, 135(1): 23-49. doi: 10.1007/s10342-015-0927-6.
    [27] ZHA M Q, CHENG X R, YU M K, et al. Effects of mixing proportion on functional traits of Cunninghumia lanceolata and Zelkova schneideriana seedling[J]. Acta Ecol Sin, 2021, 41(21): 8556-8567.[查美琴, 成向荣, 虞木奎, 等. 不同混交比例对杉木和大叶榉幼苗功能性状的影响[J]. 生态学报, 2021, 41(21): 8556-8567. doi: 10.5846/stxb 202007311999.]
    [28] WANG J, REN H, YANG L, et al. Establishment and early growth of introduced indigenous tree species in typical plantations and shrubland in south China[J]. For Ecol Manage, 2009, 258(7): 1293-1300. doi: 10. 1016/j.foreco.2009.06.022.
    [29] DONG M. Survey, Observation and Analysis of Terrestrial Biocommunities[M]. Beijing: Standards Press of China, 1997.[董鸣. 陆地生物群落调查观测与分析[M]. 北京: 中国标准出版社, 1997.]
    [30] HAN T T, REN H, WANG J, et al. Variations of leaf eco-physiological traits in relation to environmental factors during forest succession[J]. Ecol Indic, 2020, 117: 106511. doi: 10.1016/j.ecolind.2020.106511.
    [31] WRIGHT I J, REICH P B, CORNELISSEN J H C, et al. Assessing the generality of global leaf trait relationships[J]. New Phytol, 2005, 166(2): 485-496. doi: 10.1111/j.1469-8137.2005.01349.x.
    [32] WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985): 821-827. doi: 10. 1038/nature02403.
    [33] POORTER L, WRIGHT S J, PAZ H, et al. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests[J]. Ecology, 2008, 89(7): 1908-1920. doi: 10.1890/07-0207.1.
    [34] PAINE C E T, AMISSAH L, AUGE H, et al. Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why[J]. J Ecol, 2015, 103(4): 978-989. doi: 10.1111/1365-2745.12401.
    [35] GIBERT A, GRAY E F, WESTOBY M, et al. On the link between functional traits and growth rate: Meta-analysis shows effects change with plant size, as predicted[J]. J Ecol, 2016, 104(5): 1488-1503. doi: 10.1111/1365-2745.12594.
    [36] GIVNISH T J. Plant stems: Biomechanical adaptation for energy capture and influence on species distributions[M]//GARTNER B L. Plant Stems Physiology and Functional Morphology. San Diego: Academic Press, 1995.
    [37] KING D A. Size-related changes in tree proportions and their potential influence on the course of height growth[M]//MEINZER F C, LACHENBRUCH B, DAWSON T E. Size- and Age-Related Changes in Tree Structure and Function. Dordrecht: Springer, 2011.
    [38] RICHARDS A E, FORRESTER D I, BAUHUS J, et al. The influence of mixed tree plantations on the nutrition of individual species: A review[J]. Tree Physiol, 2010, 30(9): 1192-1208. doi: 10.1093/tree phys/tpq035.
    [39] PÉREZ-HARGUINDEGUY N, DÍAZ S, GARNIER E, et al. New handbook for standardised measurement of plant functional traits worldwide[J]. Aust J Bot, 2013, 61(3): 167-234. doi: 10.1071/BT12225.
    [40] FORRESTER D I, BAUHUS J, COWIE A L, et al. Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: A review[J]. For Ecol Manage, 2006, 233(2/3): 211-230. doi: 10.1016/j.foreco.2006. 05.012.
    [41] AMAZONAS N T, FORRESTER D I, SILVA C C, et al. High diversity mixed plantations of Eucalyptus and native trees: An interface between production and restoration for the tropics[J]. For Ecol Manage, 2018, 417: 247-256. doi: 10.1016/j.foreco.2018.03.015.
    [42] AMAZONAS N T, FORRESTER D I, SILVA C C, et al. Light- and nutrient-related relationships in mixed plantations of Eucalyptus and a high diversity of native tree species[J]. New For, 2021, 52(5): 807-828. doi: 10.1007/s11056-020-09826-x.
    [43] LONG J. Evaluation of leaf nutrient resorption efficiency under mixed Eucalyptus and native trees plantations with different established proportions[D]. Beijing: University of Chinese Academy of Sciences, 2022.[龙靖. 不同比例桉树-乡土树种混交林叶片养分再吸收效率评价[D]. 北京: 中国科学院大学, 2022.]
    [44] KOERSELMAN W, MEULEMAN A F M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation[J]. J Appl Ecol, 1996, 33(6): 1441-1450. doi: 10.2307/2404783.
    [45] CAMPO J, GALLARDO J F, HERNÁNDEZ G. Leaf and litter nitrogen and phosphorus in three forests with low P supply[J]. Eur J For Res, 2014, 133(1): 121-129. doi: 10.1007/s10342-013-0748-4.
    [46] YAN K, DUAN C Q, FU D G, et al. Leaf nitrogen and phosphorus stoichiometry of plant communities in geochemically phosphorus- enriched soils in a subtropical mountainous region, SW China[J]. Environ Earth Sci, 2015, 74(5): 3867-3876. doi: 10.1007/s12665-015-4519-z.
    [47] LI M, HUANG C H, YANG T X, et al. Role of plant species and soil phosphorus concentrations in determining phosphorus: Nutrient stoichiometry in leaves and fine roots[J]. Plant Soil, 2019, 445(1/2): 231-242. doi: 10.1007/s11104-019-04288-3.
    [48] HOOPER D U, CHAPIN F S, EWEL J J, et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge[J]. Ecol Monogr, 2005, 75(1): 3-35. doi: 10.1890/04-0922.
    [49] FORRESTER D I, BAUHUS J. A review of processes behind diversity- productivity relationships in forests[J]. Curr For Rep, 2016, 2(1): 45-61. doi: 10.1007/s40725-016-0031-2.
    [50] SIDDIQUE I, ENGEL V L, PARROTTA J A, et al. Dominance of legume trees alters nutrient relations in mixed species forest restoration plantings within seven years[J]. Biogeochemistry, 2008, 88(1): 89-101. doi: 10.1007/s10533-008-9196-5.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

龙靖,何小芳,陆宏芳,刘楠,林永标,杨龙,王俊.混交比例对桉树-乡土树种混交林优势树种叶片资源获取性状的影响[J].热带亚热带植物学报,2024,32(1):27~36

复制
分享
文章指标
  • 点击次数:239
  • 下载次数: 470
  • HTML阅读次数: 255
  • 引用次数: 0
历史
  • 收稿日期:2022-11-02
  • 在线发布日期: 2024-01-26
  • 出版日期: 2024-01-20
文章二维码