基于叶片解剖性状探究29种植物对热带珊瑚岛的适应策略
作者:
基金项目:

国家重点研发计划项目(2021YFC3100401);中国科学院青年创新促进会(2019339);中国科学院华南植物园青年人才项目(QNXM-01); 中国科学院重点部署项目(KGFZD-135-19-08)资助


Adaptation Strategies of 29 Species to Tropical Coral Islands Based on Leaf Anatomical Traits
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探究植物对热带珊瑚岛高温、强光照、干旱、盐碱等极端环境的适应策略,分别以生长于海南文昌苗圃和移栽至热带珊瑚岛的29种植物为研究对象,对其叶片性状进行测定和比较分析。结果表明,与海南文昌的同种植物相比,热带珊瑚岛的草本植物除干物质含量增加外其他性状均无显著改变;而木本植物的比叶面积显著下降,叶片厚度和叶片干物质含量显著增加,海绵组织更厚且栅栏组织排列更紧密,但气孔长度、气孔密度及气孔面积指数无显著差异。岛上木本植株采取慢速投资-收益的资源获取策略,将更多的资源投入到叶片构建中从而增强逆境下的适应性,并且通过非气孔调节的方式提高光合与储水的潜力以抵御胁迫。栽植于热带珊瑚岛的29种植物能够采用更保守的资源利用策略,较好地适应干旱、强光照等胁迫环境,可用于热带珊瑚岛植被构建。

    Abstract:

    In order to explore the adaptation strategies of plants to extreme environments such as drought, strong light, saline alkali and barren soil in tropical coral islands, leaf anatomical traits of 29 species grown in Wenchang, Hainan, and transplanted to tropical coral islands were measured and compared. The results showed that compared with the same species in Wenchang, Hainan, the herbaceous plants transplanted to the tropical coral island had no significant changes except for the increase of dry matter content; while the specific leaf area (SLA) of woody plants decreased significantly, the leaf thickness and dry matter content of leaves (LDMC) increased significantly, the spongy tissue was thicker and the palisade tissue was arranged more closely, but there was no significant difference in length, density and area index of stomata. Woody plants on the island adopt the resource acquisition strategy of slow investment income, put more resources into leaf construction to enhance adaptability under stress, and improve the potential of photosynthesis and water storage to resist stress through non stomatal regulation. In conclusion, the 29 plant species on tropical coral islands had stronger resource utilization ability, could adopt more conservative resource utilization strategies, better adapt to drought, strong light and other stress environments, and could be used for vegetation construction of tropical coral islands.

    参考文献
    [1] REN H, JIAN S G, ZHANG Q M, et al. Plants and vegetation on South China Sea Islands[J]. Ecol Environ Sci, 2017, 26(10): 1639-1648. 任海, 简曙光, 张倩媚, 等. 中国南海诸岛的植物和植被现状[J]. 生态环境学报, 2017, 26(10): 1639-1648. doi: 10.16258/j.cnki.1674-5906.2017.10.001.
    [2] ZHAO H T, WANG L R, YUAN J Y. Natural environment, resources and development of the South China Sea Islands: The 70th anniversary of recovery of the South China Sea Islands (3)[J]. Trop Geogr, 2017, 37(5): 659-680. 赵焕庭, 王丽荣, 袁家义. 南海诸岛的自然环境、资源与开发——纪念中国政府收复南海诸岛70周年(3)[J]. 热带地理, 2017, 37(5): 659-680. doi: 10.13284/j.cnki.rddl.002983.
    [3] CHEN H Y, TANG K X, SUN Y M, et al. Drought-tolerant plants screening and drought-resistant technology research for island vegetation restoration[J]. J Appl Oceanogr, 2016, 35(2): 223-228. 陈慧英, 汤坤贤, 孙元敏, 等. 海岛植被修复中的耐旱植物筛选及抗旱技术研究[J]. 应用海洋学学报, 2016, 35(2): 223-228. doi: 10.3969/J.ISSN.2095-4972.2016.01.011.
    [4] LUO Q, LIU H, WU G L, et al. Using functional traits to evaluate the adaptability of five plant species on tropical coral islands[J]. Acta Ecol Sin, 2018, 38(4): 1256-1263. 罗琦, 刘慧, 吴桂林, 等. 基于功能性状评价5种植物对热带珊瑚岛环境的适应性[J]. 生态学报, 2018, 38(4): 1256-1263. doi: 10.5846/stxb201612152597.
    [5] VIOLLE C, NAVAS M L, VILE D, et al. Let the concept of trait be functional![J]. Oikos, 2007, 116(5): 882-892. doi: 10.1111/j.0030-1299.2007.15559.x.
    [6] DU H D, XU C H, LIU P, et al. Foliar anatomical structures and ecological adaptabilities of dominant plants in the north Shaanxi Loess Plateau[J]. Acta Bot Boreal-Occid Sin, 2010, 30(2): 293-300. 杜华栋, 徐翠红, 刘萍, 等. 陕北黄土高原优势植物叶片解剖结构的生态适应性[J]. 西北植物学报, 2010, 30(2): 293-300.
    [7] LI G H, ZHANG K, LIU F Z, et al. Morphological and physiological traits of leaf in different drought resistant peanut cultivars[J]. Sci Agric Sin, 2014, 47(4): 644-654. 厉广辉, 张昆, 刘风珍, 等. 不同抗旱性花生品种的叶片形态及生理特性[J]. 中国农业科学, 2014, 47(4): 644-654. doi: 10.3864/j.issn.0578-1752.2014.04.004.
    [8] ZHOU W M, LIU N, CAI H Y, et al. Ecophysiological adaptability of Hernandia nymphaeifolia to tropical coral islands[J]. Guihaia, 2021, 41(6): 897-904. 周婉敏, 刘楠, 蔡洪月, 等. 莲叶桐对热带珊瑚岛环境的生理生态适应性[J]. 广西植物, 2021, 41(6): 897-904. doi: 10.11931/guihaia.gxzw202007030.
    [9] XU B B, LIU N, REN H, et al. Stress resistance biological characteristics of Scaevola sericea in Paracel Islands[J]. Guihaia, 2018, 38(10): 1277-1285. 徐贝贝, 刘楠, 任海, 等. 西沙群岛草海桐的抗逆生物学特性[J]. 广西植物, 2018, 38(10): 1277-1285. doi: 10.11931/guihaia.gxzw201711012.
    [10] YAN L, LI H, HE X, et al. Ecological anatomy of nine priority species in Alasan area[J]. J Inner Mongolia Agric Univ, 2000, 21(3): 65-71. 燕玲, 李红, 贺晓, 等. 阿拉善地区9种珍稀濒危植物营养器官生态解剖观察[J]. 内蒙古农业大学学报, 2000, 21(3): 65-71.
    [11] CAI Y L, SONG Y C. Adaptive ecology of lianas in Tiantong evergreen broad-leaved forest, Zhejiang, China: I. Leaf anatomical characters[J]. Acta Phytoecol Sin, 2001, 25(1): 90-98. 蔡永立, 宋永昌. 浙江天童常绿阔叶林藤本植物的适应生态学: I. 叶片解剖特征的比较[J]. 植物生态学报, 2001, 25(1): 90-98.
    [12] KLICH M G. Leaf variations in Elaeagnus angustifolia related to environmental heterogeneity[J]. Environ Exp Bot, 2000, 44(3): 171-183. doi: 10.1016/s0098-8472(00)00056-3.
    [13] LIAO M C, LIU N, JIAN S G. Ecophysiological adaptability of Chromolaena odorata to tropical coral islands[J]. Guihaia, 2021, 41(6): 905-913. 廖蒙承, 刘楠, 简曙光. 飞机草对热带珊瑚岛的生理生态适应性[J]. 广西植物, 2021, 41(6): 905-913. doi: 10.11931/guihaia.gxzw202009050.
    [14] CAI H Y, LIU N, WEN M H, et al. Ecological and biological characteristics of Tournefortia argentea in Xisha Islands[J]. Guihaia, 2020, 40(3): 375-383. 蔡洪月, 刘楠, 温美红, 等. 西沙群岛银毛树(Tournefortia argentea)的生态生物学特性[J]. 广西植物, 2020, 40(3): 375-383. doi: 10.11931/guihaia.gxzw201808021.
    [15] ZHANG S K, HUANG Y, JIAN S G, et al. Stress resistance characteristics of Calophyllum inophyllum, a tropical beach plant[J]. J Trop Subtrop Bot, 2019, 27(4): 391-398. 张世柯, 黄耀, 简曙光, 等. 热带滨海植物红厚壳的抗逆生物学特性[J]. 热带亚热带植物学报, 2019, 27(4): 391-398. doi: 10.11926/jtsb.4043.
    [16] LI X Y, LIU D M, JIAN S G, et al. Biological characteristics of drought resistance of Guettarda speciosa[J]. Guihaia, 2021, 41(6): 914-921. 李晓盈, 刘东明, 简曙光, 等. 海岸桐的抗旱生物学特性[J]. 广西植物, 2021, 41(6): 914-921. doi: 10.11931/guihaia.gxzw201908017.
    [17] JIAN S G, REN H. Atlas on Tool Species for Vegetation Restoration on Tropical Coral Islands[M]. Beijing: China Forestry Publishing House, 2017: 2-119. 简曙光, 任海. 热带珊瑚岛礁植被恢复工具种图谱[M]. 北京: 中国林业出版社, 2017: 2-119.
    [18] VENDRAMINI F, DÍAZ S, GURVICH D E, et al. Leaf traits as indicators of resource-use strategy in floras with succulent species[J]. New Phytol, 2002, 154(1): 147-157. doi: 10.1046/j.1469-8137.2002.00357.x.
    [19] LIU J H, ZENG D H, LEE D K. Leaf traits and their interrelationships of main plant species in southeast Horqin Sandy Land[J]. Chin J Ecol, 2006, 25(8): 921-925. 刘金环, 曾德慧, LEE D K. 科尔沁沙地东南部地区主要植物叶片性状及其相互关系[J]. 生态学杂志, 2006, 25 (8): 921-925.
    [20] QIU D, WU G L, LIU L, et al. Spatial-temporal variation of leaf dry matter content and specific leaf area of Cinnamomum camphora in urban area[J]. J Yunnan Univ (Nat Sci), 2019, 41(3): 609-618. 邱东, 吴甘霖, 刘玲, 等. 城市香樟叶片干物质含量及比叶面积的时空变异[J]. 云南大学学报(自然科学版), 2019, 41(3): 609-618. doi: 10.7540/j.ynu.20180178.
    [21] CUNNINGHAM S A, SUMMERHAYES B, WESTOBY M. Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients[J]. Ecol Monogr, 1999, 69(4): 569-588. doi: 10.1890/0012-9615(1999)069[0569:EDILSA]2.0.CO;2.
    [22] REN Y Y, LIU Y P, WANG N, et al. The relationship between leaf anatomic structure and drought resistance of nine broadleaf plants[J]. J Nanjing For Univ (Nat Sci), 2014, 38(4): 64-68. 任媛媛, 刘艳萍, 王念, 等. 9种屋顶绿化阔叶植物叶片解剖结构与抗旱性的关系[J]. 南京林业大学学报(自然科学版), 2014, 38(4): 64-68. doi: 10.3969/j.issn.1000-2006.2014.04.012.
    [23] LI B, CHEN X M, LI T Y, et al. Comparison of the anatomical structures of the leaves of two different drought resistant Agropyron cristatum[J]. Jiangsu Agric Sci, 2015, 43(9): 247-249. 李波, 陈雪梅, 李铁缘, 等. 2种不同抗旱性冰草叶片解剖结构的比较[J]. 江苏农业科学, 2015, 43(9): 247-249. doi: 10.15889/j.issn.1002-1302.2015.09.082.
    [24] GOWER S T, KUCHARIK C J, NORMAN J M. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems[J]. Remote Sens Environ, 1999, 70(1): 29-51. doi: 10.1016/s0034-4257(99)00056-5.
    [25] CHANG Y Q, XU W Y, MU L Q, et al. Effects of drought stress on anatomical structure of leaves of three species of shrubs and their drought resistances[J]. J NE For Univ, 2012, 40(3): 36-40. 常英俏, 徐文远, 穆立蔷, 等. 干旱胁迫对3种观赏灌木叶片解剖结构的影响及抗旱性分析[J]. 东北林业大学学报, 2012, 40(3): 36-40. doi: 10.3969/j.issn.1000-5382.2012.03.010.
    [26] FU Q S, LI H L, CUI J, et al. Effects of water stress on photosynthesis and associated physiological characters of Capsicum annuum L. [J]. Sci Agric Sin, 2009, 42(5): 1859-1866. 付秋实, 李红岭, 崔健, 等. 水分胁迫对辣椒光合作用及相关生理特性的影响[J]. 中国农业科学, 2009, 42(5): 1859-1866. doi: 10.3864/j.issn.0578-1752.2009.05.046.
    [27] REICH P B, WALTERS M B, ELLSWORTH D S, et al. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf lifespan: A test across biomes and functional groups[J]. Oecologia, 1998, 114(4): 471-482. doi: 10.1007/s004420050471.
    [28] ZHONG Y M, WANG W J, WANG J M, et al. Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors[J]. J Beijing For Univ, 2019, 41(10): 20-29. 钟悦鸣, 王文娟, 王健铭, 等. 极端干旱区绿洲植物叶功能性状及其对土壤水盐因子的响应[J]. 北京林业大学学报, 2019, 41(10): 20-29. doi: 10.13332/j.1000-1522.20190128.
    [29] CHEN L, YANG X G, SONG N P, et al. A study on variations in leaf trait of 35 plants in the arid region of middle Ningxia, China[J]. Acta Pratac Sin, 2014, 23(1): 41-49. 陈林, 杨新国, 宋乃平, 等. 宁夏中部干旱带主要植物叶性状变异特征研究[J]. 草业学报, 2014, 23(1): 41-49. doi: 10.11686/cyxb20140106.
    [30] ZHANG L, LUO T X, DENG K M, et al. Vertical variations in specific leaf area and leaf dry matter content with canopy height in Pinus yunnanensis[J]. J Beijing For Univ, 2008, 30(1): 40-44. 张林, 罗天祥, 邓坤枚, 等. 云南松比叶面积和叶干物质含量随冠层高度的垂直变化规律[J]. 北京林业大学学报, 2008, 30(1): 40-44. doi: 10.13332/j.1000-1552.2008.01.019.
    [31] WILSON P J, THOMPSON K, HODGSON J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytol, 1999, 143(1): 155-162. doi: 10.1046/j.1469-8137.1999.00427.x.
    [32] GAO J L, LUO F M, ZHAO Y M, et al. Specific leaf area and leaf dry matter content of three kinds of poplar in Ulan Buh Desert Oasis[J]. J NW For Univ, 2016, 31(1): 15-20. 高君亮, 罗凤敏, 赵英铭, 等. 乌兰布和沙漠绿洲3种杨树比叶面积和叶干物质含量研究[J]. 西北林学院学报, 2016, 31(1): 15-20. doi: 10.3969/j.issn.1001-7461.2016.01.03.
    [33] WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985): 821-827. doi: 10.1038/nature02403.
    [34] ZHANG L, LUO T X. Advances in ecological studies on leaf lifespan and associated leaf traits[J]. Chin J Plant Ecol, 2004, 28(6): 844-852. 张林, 罗天祥. 植物叶寿命及其相关叶性状的生态学研究进展[J]. 植物生态学报, 2004, 28(6): 844-852. doi: 10.17521/cjpe.2004.0110.
    [35] ACKERLY D D, KNIGHT C A, WEISS S B, et al. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: Contrasting patterns in species level and community level analyses[J]. Oecologia, 2002, 130(3): 449-457. doi: 10.1007/s004420100805.
    [36] LI S J, SU P X, ZHANG H N, et al. Characteristics and relationships of foliar water and leaf functional traits of desert plants[J]. Plant Physiol J, 2013, 49(2): 153-160. 李善家, 苏培玺, 张海娜, 等. 荒漠植物叶片水分和功能性状特征及其相互关系[J]. 植物生理学报, 2013, 49(2): 153-160. doi: 10.13592/j.cnki.ppj.2013.02.011.
    [37] ZHANG Z G, WEI H X. Specific leaf area and leaf dry matter content of main plant species in red lotus wetland of Weishan Lake[J]. Acta Agric Jiangxi, 2021, 33(5): 63-69. 张治国, 魏海霞. 微山湖红荷湿地主要植物种比叶面积和叶干物质含量研究[J]. 江西农业学报, 2021, 33(5): 63-69. doi: 10.19386/j.cnki.jxnyxb.2021.05.010.
    [38] SAURA-MAS S, SHIPLEY B, LLORET F. Relationship between post-fire regeneration and leaf economics spectrum in Mediterranean woody species[J]. Funct Ecol, 2009, 23(1): 103-110. doi: 10.1111/j.1365-2435.2008.01474.x.
    [39] CORNELISSEN J H C, LAVOREL S, GARNIER E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Aust J Bot, 2003, 51(4): 335-380. doi: 10.1071/bt02124.
    [40] WRIGHT J P, SUTTON-GRIER A. Does the leaf economic spectrum hold within local species pools across varying environmental conditions?[J]. Funct Ecol, 2012, 26(6): 1390-1398. doi: 10.1111/1365-2435.12001.
    [41] GUO X X, ZUO X A, YUE P, et al. Responses of leaf morphological traits of three dominant plants to water and nitrogen in desert steppe of Inner Mongolia[J]. J Desert Res, 2021, 41(1): 137-144. 郭新新, 左小安, 岳平, 等. 内蒙古荒漠草原沙生针茅(Stipa glareosa)、碱韭(Allium polyrhizum)和骆驼蓬(Peganum harmala)叶形态性状对土壤水氮耦合的响应[J]. 中国沙漠, 2021, 41(1): 137-144.
    [42] SANTIAGO L S, GOLDSTEIN G, MEINZER F C, et al. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees[J]. Oecologia, 2004, 140(4): 543-550. doi: 10.1007/s00442-004-1624-1.
    [43] XU Z Z, ZHOU G S. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass[J]. J Exp Bot, 2008, 59(12): 3317-3325. doi: 10.1093/jxb/ern185.
    [44] PAN X, QIU Q, LI J Y, et al. Drought resistance evaluation based on leaf anatomical structures of 25 shrubs on the Tibetan Plateau[J]. J S China Agric Univ, 2015, 36(2): 61-68. 潘昕, 邱权, 李吉跃, 等. 基于叶片解剖结构对青藏高原25种灌木的抗旱性评价[J]. 华南农业大学学报, 2015, 36(2): 61-68. doi: 10.7671/j.issn.1001-411X.2015.02.011.
    [45] XI R C, MA L Y, WANG R H, et al. Research advances in water consumption controlling mechanisms of forest tree species[J]. Chin J Ecol, 2006, 25(6): 692-697. 奚如春, 马履一, 王瑞辉, 等. 林木耗水调控机理研究进展[J]. 生态学杂志, 2006, 25(6): 692-697.
    [46] LI J Y. Mechanisms of drought tolerance in plants[J]. J Beijing For Univ, 1991(3): 92-100. 李吉跃. 植物耐旱性及其机理[J]. 北京林业大学学报, 1991(3): 92-100.
    [47] LI F L, BAO W K, WU N. Morphological and physiological responses of current Sophora davidii seedlings to drought stress[J]. Acta Ecol Sin, 2009, 29(10): 5406-5416. 李芳兰, 包维楷, 吴宁. 白刺花幼苗对不同强度干旱胁迫的形态与生理响应[J]. 生态学报, 2009, 29(10): 5406-5416.
    [48] XUE Z D, HAN R L, HOU Q C, et al. Anatomical study of xeromorphism of leaves in cutting for five brushes in Yan'an region[J]. Acta Bot Boreal-Occid Sin, 2004, 24(7): 1200-1206. 薛智德, 韩蕊莲, 侯庆春, 等. 延安地区5种灌木叶旱性结构的解剖研究[J]. 西北植物学报, 2004, 24(7): 1200-1206.
    [49] HAN G, LI S X, XU P, et al. Analyisis of drought resistance on anatomical structure of leave of six species of shrubs[J]. J NW For Univ, 2006, 21(4): 43-46. 韩刚, 李少雄, 徐鹏, 等. 6种灌木叶片解剖结构的抗旱性分析[J]. 西北林学院学报, 2006, 21(4): 43-46.
    [50] ZHU Y H, KANG H Z, LIU C J. Affecting factors of plant stomatal traits variability and relevant investigation methods[J]. Chin J Appl Ecol, 2011, 22(1): 250-256. 朱燕华, 康宏樟, 刘春江. 植物叶片气孔性状变异的影响因素及研究方法[J]. 应用生态学报, 2011, 22(1): 250-256. doi: 10.13287/j.1001-9332.2011.0011.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周雨珩,刘慧,张世柯,刘芳延,刘楠.基于叶片解剖性状探究29种植物对热带珊瑚岛的适应策略[J].热带亚热带植物学报,2023,31(6):747~756

复制
分享
文章指标
  • 点击次数:265
  • 下载次数: 751
  • HTML阅读次数: 434
  • 引用次数: 0
历史
  • 收稿日期:2022-10-19
  • 在线发布日期: 2023-11-24
  • 出版日期: 2023-11-20
文章二维码