水菜花种群潜在生境选择与空间格局预测
作者:
基金项目:

国家自然科学基金项目(32260106);海南省省属科研院所技术开发专项(KYYS-2021-21, KYYS-2021-04)资助


Potential Habitat Selection and Spatial Pattern Prediction of Ottelia cordata
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    国家二级保护野生植物水菜花(Ottelia cordata),喜生于清洁的水环境中,对环境变化极为敏感,是检验湿地环境及气候变化的关键指示物种之一,在我国仅零星分布于海南北部的火山熔岩湿地区,生存状况不容乐观。研究水菜花种群潜在生境选择及其空间格局演变,有利于加强濒危物种保护保育及湿地生态系统修复、管理。该研究基于GIS平台和MaxEnt模型,结合气候、地形和土壤因子,探究水菜花种群环境限制因子及其在气候变化背景下潜在适宜生境的演变格局。结果表明,水菜花种群对温差与降水量变化敏感,等温性、最冷季度降水量、土壤类型和年均降水量对水菜花种群分布影响显著;全新世中期-当前-2070年气候变化背景下,水菜花适宜生境面积先减小后增大,分布重心呈西南-东北-西南转移格局;未来气候情景下,水菜花种群高度和中度适宜生境缩减,低适宜生境增加,南部地区将出现新增适宜生境,东北、西北及西南部适宜生境将发生消减。该研究从气候环境角度论证了水菜花种群的潜在生境选择及空间变化特征,可为濒危物种保护保育、湿地管理及其生物多样性维护工作提供参考和指导。

    Abstract:

    Ottelia cordata, a wild plant under State second-class protection, likes to be grown in clean water, and is extremely sensitive to environmental changes. It is one of the key indicator species for testing wetland environment and climate change. In China, it is only distributed sporadically in volcanic lava wetland in northern Hainan, the survival condition is not optimistic. The study of potential habitat selection and spatial pattern evolution of O. cordata population will help strengthen the conservation of endangered species and the restoration as well as the management of wetland ecosystem. Based on GIS platform and MaxEnt model, combining with climate, topography and soil factors, the environmental limiting factors of O. cordata population and the evolution pattern of potential suitable habitat in the context of climate change were studied. The results showed that O. cordata population was sensitive to temperature difference and precipitation change. Besides, isothermality, precipitation in the coldest quarter, type of soil and annual precipitation were key environmental factors affecting the distribution of O. cordata population. Under the background of climate change from the middle Holocene to current to 2070s, the area of suitable habitat of O. cordata decreased first and then increased, and the distribution center showed a transfer pattern from southwest to northeast to southwest. Under the future climate scenarios, the highly and moderately suitable habitats were decrease, while the low suitable habitats will increase. The new habitats will appear in the southern region, and the suitable habitats will decrease in the northeast, northwest and southwest. Therefore, the potential habitat selection and spatial distribution characteristics of O. cordata population were discussed from the perspective of climate environment, which could provide reference and theoretical basis for endangered species conservation, wetland management and biodiversity maintenance.

    参考文献
    [1] YANG X B, LI D H, CHEN Y K, et al. The Colored Illustrated Flora of Hainan Province, Vol. 1-14[M]. Beijing: Science Press, 2015.[杨小波, 李东海, 陈玉凯, 等. 海南植物图志, 第1~14卷[M]. 北京: 科学出版社, 2015.]
    [2] ZHAO Z C, SUN X Z, WANG H Q. A study on the ecology of the fresh water Hydrocharidaceae in south China[J]. Acta Ecol Sin, 1984, 4(4): 354-363.[赵佐成, 孙祥钟, 王徽勤. 华南地区淡水水鳖科植物的生态特征和群落学观察[J]. 生态学报, 1984, 4(4): 354-363.]
    [3] SHEN Y C, LEI J R, SONG X Q, et al. Annual population dynamics and their influencing factors for an endangered submerged macrophyte (Ottelia cordata)[J]. Front Ecol Evol, 2021, 9: 688304. doi: 10.3389/FEVO.2021.688304.
    [4] JIAN Y X, YANG G M, PENG Y H, et al. Studies on daryotypes of Ottelia alismoides (L.) Pers. and Ottelia cordata (Wall.) Dandy[J]. J Hunan Coll Trad Chin Med, 1996, 16(1): 56-58.[简永兴, 杨广民, 彭映辉, 等. 水白菜与水菜花的核型分析[J]. 湖南中医学院学报, 1996, 16(1): 56-58.]
    [5] ZHANG Q F, SHEN Z X, LI F Y, et al. Complete chloroplast genome sequence of an endangered Ottelia cordata and its phylogenetic analysis[J]. Mitochondrial DNA B Resour, 2020, 5(3): 2209-2210. doi: 10.1080/23802359.2020.1768921.
    [6] WANG H X, GUO J L, LI Z M, et al. Characterization of the complete chloroplast genome of an endangered aquatic macrophyte, Ottelia cordata (Hydrocharitaceae)[J]. Mitochondrial DNA B Resour, 2019, 4(1): 1839-1840. doi: 10.1080/23802359.2019.1612719.
    [7] WANG S N, LI P P, LIAO Z Y, et al. Adaptation of inorganic carbon utilization strategies in submerged and floating leaves of heteroblastic plant Ottelia cordata[J]. Environ Exp Bot, 2022, 196: 104818. doi: 10.1016/j.envexpbot.2022.104818.
    [8] HUANG W M, HAN S J, XING Z F, et al. Responses of leaf anatomy and CO2 concentrating mechanisms of the aquatic plant Ottelia cordata to variable CO2[J]. Front Plant Sci, 2020, 11: 1261. doi: 10.3389/fpls. 2020.01261.
    [9] FARASHI A, KABOLI M, KARAMI M. Predicting range expansion of invasive raccoons in northern Iran using ENFA model at two different scales[J]. Ecol Inform, 2013, 15: 96-102. doi: 10.1016/j.ecoinf.2013. 01.001.
    [10] KONG W Y, LI X H, ZOU H F. Optimizing MaxEnt model in the prediction of species distribution[J]. Chin J Appl Ecol, 2019, 30(6): 2116-2128.[孔维尧, 李欣海, 邹红菲. 最大熵模型在物种分布预测中的优化[J]. 应用生态学报, 2019, 30(6): 2116-2128. doi: 10.13287/j.1001-9332.201906.029.]
    [11] LIN H, WANG Y S. Analysis and research on water quality of Meishe River national wetland park in Haikou[J]. Trop For, 2020, 48(4): 42-46.[林华, 王耀山. 海口美舍河国家湿地公园水质分析研究[J]. 热带林业, 2020, 48(4): 42-46. doi: 10.3969/j.issn.1672-0938.2020.04.009.]
    [12] YANG X B, WU Q S, LI Y L, et al. Characteristic of tropical forest composition in north of Hainan Island[J]. Sci Sil Sin, 2005, 41(3): 19-24.[杨小波, 吴庆书, 李跃烈, 等. 海南北部地区热带雨林的组成特征[J]. 林业科学, 2005, 41(3): 19-24. doi: 10.3321/j.issn:1001-7488.2005.03.004.]
    [13] WANG X. Study on interconnected river network system and hydrodynamic water environment in Haikou City[D]. Guangzhou: South China University of Technology, 2018.[王欣. 海口市河湖水系连通与水动力水环境研究[D]. 广州: 华南理工大学, 2018.]
    [14] SHEN Y C, LU G, LIU S B, et al. Characteristics of plant distribution in volcanic lava wetlands in Yangshan, Haikou[J]. Wetland Sci, 2019, 17(5): 493-503.[申益春, 卢刚, 刘寿柏, 等. 海口羊山火山熔岩湿地中的植物分布特征[J]. 湿地科学, 2019, 17(5): 493-503. doi: 10. 13248/j.cnki.wetlandsci.2019.05.001.]
    [15] YANG X Q, KUSHWAHA S P S, SARAN S, et al. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecol Eng, 2013, 51: 83-87. doi: 10.1016/j.ecoleng.2012.12.004.
    [16] ZHANG H, ZHAO H X, XU C G. The potential geographical distribution of Alsophila spinulosain under climate change in China[J]. Chin J Ecol, 2021, 40(4): 968-979.[张华, 赵浩翔, 徐存刚. 气候变化背景下孑遗植物桫椤在中国的潜在地理分布[J]. 生态学杂志, 2021, 40(4): 968-979. doi: 10.13292/j.1000-4890.202104.022.]
    [17] ZHANG H, ZHAO H X, WANG H. Potential geographical distribution of Populus euphratica in China under future climate change scenarios based on Maxent model[J]. Acta Ecol Sin, 2020, 40(18): 6552-6563.[张华, 赵浩翔, 王浩. 基于Maxent模型的未来气候变化情景下胡杨在中国的潜在地理分布[J]. 生态学报, 2020, 40(18): 6552-6563. doi: 10.5846/stxb201906111232.]
    [18] ARAÚJO M B, GUISAN A. Five (or so) challenges for species distribution modelling[J]. J Biogeogr, 2006, 33(10): 1677-1688. doi: 10.1111/j.1365-2699.2006.01584.x.
    [19] PEARSON R G, RAXWORTHY C J, NAKAMURA M, et al. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar[J]. J Biogeogr, 2007, 34(1): 102-117. doi: 10.1111/j.1365-2699.2006.01594.x.
    [20] NING Y, LEI J R, SONG X Q, et al. Modeling the potential suitable habitat of Impatiens hainanensis, a limestone-endemic plant[J]. Chin J Plant Ecol, 2018, 42(9): 946-954.[宁瑶, 雷金睿, 宋希强, 等. 石灰岩特有植物海南凤仙花潜在适宜生境分布模拟[J]. 植物生态学报, 2018, 42(9): 946-954. doi: 10.17521/cjpe.2018.0066.]
    [21] SEMENIUK C A, SEMENIUK V. The response of basin wetlands to clim5.032.]nges: A review of case studies from the Swan Coastal Plain, south-western Australia[J]. Hydrobiologia, 2013, 708(1): 45-67. doi: 10.1007/s10750-012-1161-6.
    [22] BARROS D F, ALBERNAZ A L M. Possible impacts of climate change on wetlands and its biota in the Brazilian Amazon[J]. Braz J Biol, 2014, 74(4): 810-820. doi: 10.1590/1519-6984.04013.
    [23] ZHANG M, LIN H, LONG X R, et al. Analyzing the spatiotemporal pattern and driving factors of wetland vegetation changes using 2000—2019 time-series Landsat data[J]. Sci Total Environ, 2021, 780: 146615. doi: 10.1016/j.scitotenv.2021.146615.
    [24] YU C L, WANG Z C, LIU D, et al. Evolution process and driving force analysis of natural wetlands in Xiliao River Basin based on SWAT model[J]. Trans Chin Soc Agric Eng, 2020, 36(22): 286-297.[于成龙, 王志春, 刘丹, 等. 基于SWAT模型的西辽河流域自然湿地演变过程及驱动力分析[J]. 农业工程学报, 2020, 36(22): 286-297. doi: 10.11975/j.issn.1002-6819.2020.22.032.]
    [25] YANG D, WANG W J, WU X Q, et al. Regime shifts of Anguli wetland and its response to climate change from 1985 to 2016[J]. Res Environ Sci, 2021, 34(12): 2954-2961.[杨丹, 王文杰, 吴秀芹, 等. 1985—2016年安固里淖湖泊湿地生态系统稳态转变及对气候变化的响应[J]. 环境科学研究, 2021, 34(12): 2954-2961. doi: 10.13198/j.issn.1001-6929.2021.09.17.]
    [26] LIU Z W, LI S N, WEI W, et al. Research progress on alpine wetland changes and driving forces in Qinghai-Tibet Plateau during the last three decades[J]. Chin J Ecol, 2019, 38(3): 856-862.[刘志伟, 李胜男, 韦玮, 等. 近三十年青藏高原湿地变化及其驱动力研究进展[J]. 生态学杂志, 2019, 38(3): 856-862. doi: 10.13292/j.1000-4890.201903.002.]
    [27] SCHEFFER M, SZABÓ S, GRAGNANI A, et al. Floating plant dominance as a stable state[J]. Proc Natl Acad Sci USA, 2003, 100(7): 4040-4045. doi: 10.1073/pnas.0737918100.
    [28] FAN Z H, HUANG Z, ZHOU X H. Optimizing and improving strategy for Haikou wetland ecological system[J]. CS For Invent Plann, 2019, 38(2): 68-72.[范志浩, 黄铮, 周湘红. 海口湿地生态系统优化提升策略[J]. 中南林业调查规划, 2019, 38(2): 68-72. doi: 10.16166/j.cnki.cn43-1095.2019.02.016.]
    [29] SHEN Y C, REN M X, LI W, et al. Landscape plant community and its application model in Yangshan Wetland[J]. Jiangsu Agric Sci, 2021, 49(11): 92-97.[申益春, 任明迅, 黎伟, 等. 羊山湿地景观植物群落与景观应用模式[J]. 江苏农业科学, 2021, 49(11): 92-97. doi: 10. 15889/j.issn.1002-1302.2021.11.016.]
    [30] THOMAS C D, CAMERON A, GREEN R E, et al. Extinction risk from climate change[J]. Nature, 2004, 427(6970): 145-148. doi: 10. 1038/nature02121.
    [31] ZHONG Z Q, QIU P H, YANG X. Analysis of wetland changes and driving forces in Haikou in the last 30 years[J]. J Hainan Norm Univ (Nat Sci), 2021, 34(2): 215-226.[钟尊倩, 邱彭华, 杨星. 海口市近30年来湿地变化及其驱动力分析[J]. 海南师范大学学报(自然科学版), 2021, 34(2): 215-226. doi: 10.12051/j.issn.1674-4942.2021.02.014.]
    [32] NGAREGA B K, NZEI J M, SAINA J K, et al. Mapping the habitat suitability of Ottelia species in Africa[J]. Plant Divers, 2022, 44(5): 468-480. doi: 10.1016/j.pld.2021.12.006.
    [33] QIN Y Y, LU K, DU Z Y, et al. Potential changes in the geographical distribution of the relict plant Potaninia mongolica Maxim. in China under climate change scenarios[J]. Acta Ecol Sin, 2022, 42(11): 4473-4484.[秦媛媛, 鲁客, 杜忠毓, 等. 气候变化情景下孑遗植物绵刺在中国的潜在地理分布[J]. 生态学报, 2022, 42(11): 4473-4484. doi: 10.5846/stxb202106111553.]
    [34] ZHANG L J, LI Y H, REN H, et al. Prediction of the suitable distribution of Cyclobalanopsis glauca and its implications for the northern boundary of subtropical zone of China[J]. Geogr Res, 2020, 39(4): 990-1001.[张立娟, 李艳红, 任涵, 等. 气候变化背景下青冈分布变化及其对中国亚热带北界的指示意义[J]. 地理研究, 2020, 39(4): 990-1001. doi: 10.11821/dlyj020190306.]
    [35] YANG T, WANG S T, WEI X Z, et al. Modeling potential distribution of an endangered genus (Sinojackia) endemic to China[J]. Plant Sci J, 2020, 38(5): 627-635.[杨腾, 王世彤, 魏新增, 等. 中国特有属秤锤树属植物的潜在分布区预测[J]. 植物科学学报, 2020, 38(5): 627-635. doi: 10.11913/PSJ.2095-0837.2020.50627.]
    [36] MA S M, WEI B, LI X C, et al. The impacts of climate change on the potential distribution of Haloxylon ammodendron[J]. Chin J Ecol, 2017, 36(5): 1243-1250.[马松梅, 魏博, 李晓辰, 等. 气候变化对梭梭植物适宜分布的影响[J]. 生态学杂志, 2017, 36(5): 1243-1250. doi: 10.13292/j.1000-4890.20170
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴庭天,雷金睿,陈宗铸,陈小花,李苑菱.水菜花种群潜在生境选择与空间格局预测[J].热带亚热带植物学报,2024,32(1):55~65

复制
分享
文章指标
  • 点击次数:152
  • 下载次数: 475
  • HTML阅读次数: 285
  • 引用次数: 0
历史
  • 收稿日期:2022-08-25
  • 在线发布日期: 2024-01-26
  • 出版日期: 2024-01-20
文章二维码